Two-Photon Voltmeter for Measuring a Molecular Electric Field (original) (raw)

Determination of excited singlet-state dipole moments of hydroxy and methoxy coumarins using solvatochromic method

European Journal of Chemistry, 2012

The effects of solvents of various polarity on the electronic absorption and fluorescence spectra of 7-hydroxy-4-trifluoromethyl coumarin; 6,7-dihydroxy-4-trifluoromethyl coumarin and 7-methoxy-4-trifluoromethyl coumarin have been investigated. The singlet-state excited dipole moments (μe) and ground state dipole moments (μg) are estimated from Bakshiev and Kawski-Chamma-Viallet equations by using the variation of Stokes' shift with the solvent's dielectric constant (ε) and refractive index (n). The observed singlet-state excited dipole moments are found to be larger than the ground-state ones. In addition, the geometry and other electronic properties are computed using ab-initio method with correlation functions at 6-31G basis set.

Revisiting the photophysical properties and excited singlet-state dipole moments of several coumarin derivatives

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011

The solvent effects on the electronic absorption and fluorescence emission spectra of several coumarins derivatives, containing amino, N,N-dimethyl-amino, N,N-diethyl-amino, hydroxyl, methyl, carboxyl, or halogen substituents at the positions 7, 4, or 3, were investigated in eight solvents with various polarities. The first excited singlet-state dipole moments of these coumarins were determined by various solvatochromic methods, using the theoretical ground-state dipole moments which were calculated by the AM1 method. The first excited singlet-state dipole moment values were obtained by the Bakhshiev, Kawski-Chamma-Viallet, Lippert-Mataga, and Reichardt-Dimroth equations, and were compared to the ground-state dipole moments. In all cases, the dipole moments were found to be higher in the excited singlet-state than in the ground state because of the different electron densities in both states. The redshifts of the absorption and fluorescence emission bands, observed for most compounds upon increasing the solvent polarity, indicated that the electronic transitions were of-* nature.

Computational and Spectral Means for Characterizing the Intermolecular Interactions in Solutions and for Estimating Excited State Dipole Moment of Solute

Symmetry

The results obtained both in quantum chemical computation and in solvatochromic study of pyridinium di-carbethoxy methylid (PCCM) are correlated in order to estimate the electric dipole moment in the excited state of this molecule. This estimation is made by a variational method in the hypothesis that the molecular polarizability does not change in time of the absorption process. Ternary solutions of PCCM in protic binary solvents are used here, both establishing the contribution of each type of interaction to the spectral shift and to characterize the composition of the first solvation shell of PCCM. Results are compared with those obtained before for other binary solvents. The difference between the interaction energies in molecular pairs of PCCM-active solvent and PCCM-less active solvent was also estimated based on the cell statistical model of the ternary solutions.

Dimers of quadrupolar chromophores in solution: electrostatic interactions and optical spectra

The Journal of …, 2009

Two dimers of a heteroaromatic quadrupolar (acceptor-donor-acceptor) chromophore have been synthesized with different interchromophoric distances. Optical spectra of dimers in solution show a red shift of the linear absorption band upon decreasing the interchromophore distance, while fluorescence and two-photon absorption spectra are only marginally affected by the interactions. A bottom up approach is adopted to describe the spectra: via a detailed spectroscopic analysis of the monomeric species in solution, we define an essential-state model for the isolated chromophore and use this information to set up a model for the dimers also accounting for interchromophore electrostatic interactions. To discriminate between static screening governed by the static dielectric constant and dynamical screening at optical frequencies, we first solve the problem in the mean-field approximation and then define the excitonic Hamiltonian on the resulting best excitonic basis. Along this line, the evolution of spectral properties with the interchromophore distance is properly rationalized.

Effects of (Multi)branching of Dipolar Chromophores on Photophysical Properties and Two-Photon Absorption

The Journal of Physical Chemistry A, 2005

To investigate the effect of branching on linear and nonlinear optical properties, a specific series of chromophores, epitome of (multi)branched dipoles, has been thoroughly explored by a combined theoretical and experimental approach. Excited-state structure calculations based on quantum-chemical techniques (timedependent density functional theory) as well as a Frenkel exciton model nicely complement experimental photoluminescence and one-and two-photon absorption findings and contribute to their interpretation. This allowed us to get a deep insight into the nature of fundamental excited-state dynamics and the nonlinear optical (NLO) response involved. Both experiment and theory reveal that a multidimensional intramolecular charge transfer takes place from the donating moiety to the periphery of the branched molecules upon excitation, while fluorescence stems from an excited state localized on one of the dipolar branches. Branching is also observed to lead to cooperative enhancement of two-photon absorption (TPA) while maintaining high fluorescence quantum yield, thanks to localization of the emitting state. The comparison between results obtained in the Frenkel exciton scheme and ab initio results suggests the coherent coupling between branches as one of the possible mechanisms for the observed enhancement. New strategies for the rational design of NLO molecular assemblies are thus inferred on the basis of the acquired insights. *

Two photon-induced fluorescence intensity and anisotropy decays of diphenylhexatriene in solvents and lipid bilayers

Journal of Fluorescence, 1992

We measured the fluorescence intensity and anisotropy decays of 1,6-diphenyl-1,3;S-hexatriene (DPH)-labeled membranes resulting from simultaneous two-photon excitation of fluorescence. Comparison of these two-photon data with the more usual one-photon measurements revealed that DPH displayed identical intensity decays, anisotropy decays, and order parameters for one-and two-photon excitation. While the anisotropy data are numerically distinct, they can be compared by use of the factor 10/7, which accounts for the two-photon versus one-photon photoselection. The increased time 0 anisotropy of DPH can result in increased resolution of complex anisotropy decays. Global analysis of the one-and two-photon data reveals consistency with a single apparent angle between the absorption and the emission oscillators. The global anisotropy analysis also suggests that, except for the photoselection factor, the anisotropy decays are the same for oneand two-photon excitation. This ideal behavior of DPH as a two-photon absorber, and its high two-photon cross section, makes DPH a potential probe for confocal two-photon microscopy and other systems where it is advantageous to use long-wavelength (680-to 760-nm) excitation.

Polarisation Sensitive Single Molecule Fluorescence Detection with Linear Polarised Excitation Light and Modulated Polarisation Direction Applied to Multichromophoric Entities

Single Molecules, 2001

Recently, investigations of the fluorescence properties of a multichromophoric dendritic entity at the single molecule level have revealed multiple fluorescence levels, collective off-states, variations of the polarisation, large shifts in the spectral position and changes in the fluorescence decay time ). In order to further elucidate the multiple processes taking place in this entity, measurements were done in which the polarisation direction of the linear polarised excitation light was modulated. The detection was sensitive for the s-and p-components of the emitted light. The patterns of modulation and relative intensity in the acquired traces reflect the energy transfer processes occurring in this multichromophoric molecule. In-phase modulation and no modulation are the typical modulation patterns that were observed. Simulations involving several models for energy transfer between the chromophores have been carried out taking into account identical conditions as for the performed measurements. The comparison of the modulation patterns and polarisation histograms to the measured data rules out certain models and refines the photophysical model for the multichromophoric entity.

Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions

The Journal of Physical Chemistry B, 2006

Electric field induced second harmonic generation (EFISH) is an important experimental technique in extracting the first hyperpolarizability of an organic chromophore molecule. Such experiments are carried out in solutions with chromophore molecules dissolved in some common solvents. A known fact is that the first hyperpolarizabilities extracted from EFISH experiments are subject to the use of local field factors. In this work, we apply simulations to study the EFISH properties of chromophore solutions. By combining quantum chemistry calculations with the results derived from molecular dynamics simulations, we show how macroscopic EFISH properties can be modeled, using 4-(dimethylamino)-4′-nitroazobenzene dissolved in chloroform as a demonstration case. The focus of the study is on deriving accurate local field factors. We find that the local field approach applies very well to dipolar solutions, such as the one studied here, but that the local field factors derived are much smaller than the commonly used Onsager or Lorentz local field factors. Our study indicates that many of the reported first hyperpolarizabilities for dipolar molecules from EFISH experiments are most probably underestimated because the Onsager/Lorentz approach, commonly used in extracting the molecular first hyperpolarizability, neglects the effects of the shapes of dipolar chromophore molecules on the local field factors.