Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification (original) (raw)

Deep Convolutional Neural Networks for Brain Computer Interface using Motor Imagery

2015

This paper presents a novel application of convolutional neural networks, classifying user intent generated through motor imagery and signalled using EEG data, with the intent of using it as input to a real-time brain-computer interface (BCI). The motivation is to design a system using which a player can control a video game character in the Cybathlon 2016 challenge. To the best of the author’s knowledge, it is the only paper attempting to classify more than two types of motor imagery using deep learning techniques. The paper proposes a novel method for defining covolutional filters along the scalp to disjoint groups of electrodes that measure activity in similar regions of the brain. Although initial results were found to demonstrate overfitting very late into the project, the preliminary results from a revised experimental setup still show significant learning and opportunities to improve the results in future research.

A Deep Learning Approach for Motor Imagery EEG Signal Classification

2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE)

Over the last few decades, the use of electroencephalography (EEG) signals for motor imagery based brain-computer interface (MI-BCI) has gained widespread attention. Deep learning have also gained widespread attention and used in various application such as natural language processing, computer vision and speech processing. However, deep learning has been rarely used for MI EEG signal classification. In this paper, we present a deep learning approach for classification of MI-BCI that uses adaptive method to determine the threshold. The widely used common spatial pattern (CSP) method is used to extract the variance based CSP features, which is then fed to the deep neural network for classification. Use of deep neural network (DNN) has been extensively explored for MI-BCI classification and the best framework obtained is presented. The effectiveness of the proposed framework has been evaluated using dataset IVa of the BCI Competition III. It is found that the proposed framework outperforms all other competing methods in terms of reducing the maximum error. The framework can be used for developing BCI systems using wearable devices as it is computationally less expensive and more reliable compared to the best competing methods. Keywords-brain-computer interface (BCI); common spatial pattern (CSP); deep neural network (DNN); electroencaphalography (EEG), motor imagery (MI).

Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users

PLOS ONE

Motor Imagery Brain-Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity patterns associated with mental imagination of movement and convert them into commands for external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) algorithms, which require extensive signal processing and feature engineering to extract changes in sensorimotor rhythms (SMR). In recent years, Deep Learning (DL) models have gained popularity for EEG classification as they provide a solution for automatic extraction of spatio-temporal features in the signals. However, past BCI studies that employed DL models, only attempted them with a small group of participants, without investigating the effectiveness of this approach for different user groups such as inefficient users. BCI inefficiency is a known and unsolved problem within BCI literature, generally defined as the inability of the user to produce the desired SMR patterns for the BCI classifier. In this study, we evalu...

The Promise of Deep Learning for BCIs: Classification of Motor Imagery EEG using Convolutional Neural Network

2021

Motor Imagery (MI) is a mental process by which an individual rehearses body movements without actually performing physical actions. Motor Imagery Brain-Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity patterns associated with this mental process and convert them into commands for external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) algorithms, which require extensive signal processing and feature engineering to extract changes in sensorimotor rhythms (SMR). However, in recent years, Deep Learning (DL) models have gained popularity for EEG classification as they provide a solution for automatic extraction of spatio-temporal features in the signals. In this study, EEG signals from 54 subjects who performed a MI task of left-or right-hand grasp was employed to compare the performance of two MI-BCI classifiers; a ML approach vs. a DL approach. In the ML approach, Common Spatial Patterns (CSP) was used for feature extraction and then L...

A Deep Convolutional Neural Network Based Classification of Multi-Class Motor Imagery with Improved Generalization

— Motor imagery (MI) based brain-computer interface (BCI) plays a crucial role in various scenarios ranging from post-traumatic rehabilitation to control prosthetics. Computer-aided interpretation of MI has augmented prior mentioned scenarios since decades but failed to address interpersonal variability. Such variability further escalates in case of multi-class MI, which is currently a common practice. The failures due to interpersonal variability can be attributed to handcrafted features as they failed to extract more generalized features. The proposed approach employs convolution neural network (CNN) based model with both filtering (through axis shuffling) and feature extraction to avail end-to-end training. Axis shuffling is performed adopted in initial blocks of the model for 1D preprocessing and reduce the parameters required. Such practice has avoided the overfitting which resulted in an improved generalized model. Publicly available BCI Competition-IV 2a dataset is considered to evaluate the proposed model. The proposed model has demonstrated the capability to identify subject-specific frequency band with an average and highest accuracy of 70.5% and 83.6% respectively. Proposed CNN model can classify in real time without relying on accelerated computing device like GPU.

Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications

Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications, 2021

Many studies applying Brain-Computer Interfaces (BCIs) based on Motor Imagery (MI) tasks for rehabilitation have demonstrated the important role of detecting the Event-Related Desynchronization (ERD) to recognize the user's motor intention. Nowadays, the development of MI-based BCI approaches without or with very few calibration stages session-by-session for different days or weeks is still an open and emergent scope. In this work, a new scheme is proposed by applying Convolutional Neural Networks (CNN) for MI classification, using an end-to-end Shallow architecture that contains two convolutional layers for temporal and spatial feature extraction. We hypothesize that a BCI designed for capturing event-related desynchronization/synchronization (ERD/ERS) at the CNN input, with an adequate network design, may enhance the MI classification with fewer calibration stages. The proposed system using the same architecture was tested on three public datasets through multiple experiments, including both subject-specific and non-subject-specific training. Comparable and also superior results with respect to the state-of-the-art were obtained. On subjects whose EEG data were never used in the training process, our scheme also achieved promising results with respect to existing non-subject-specific BCIs, which shows greater progress in facilitating clinical applications.

Optimal Deep Learning-Based Recognition Model for EEG Enabled Brain-Computer Interfaces Using Motor-Imagery

Measurement Science Review

Brain-Computer Interfaces (BCIs) facilitate the translation of brain activity into actionable commands and act as a crucial link between the human brain and the external environment. Electroencephalography (EEG)-based BCIs, which focus on motor imagery, have emerged as an important area of study in this domain. They are used in neurorehabilitation, neuroprosthetics, and gaming, among other applications. Optimal Deep Learning-Based Recognition for EEG Signal Motor Imagery (ODLR-EEGSM) is a novel approach presented in this article that aims to improve the recognition of motor imagery from EEG signals. The proposed method includes several crucial stages to improve the precision and effectiveness of EEG-based motor imagery recognition. The pre-processing phase starts with the Variation Mode Decomposition (VMD) technique, which is used to improve EEG signals. The EEG signals are decomposed into different oscillatory modes by VMD, laying the groundwork for subsequent feature extraction. F...

A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent

Frontiers in Neuroscience, 2018

Laboratory demonstrations of brain-computer interface (BCI) systems show promise for reducing disability associated with paralysis by directly linking neural activity to the control of assistive devices. Surveys of potential users have revealed several key BCI performance criteria for clinical translation of such a system. Of these criteria, high accuracy, short response latencies, and multi-functionality are three key characteristics directly impacted by the neural decoding component of the BCI system, the algorithm that translates neural activity into control signals. Building a decoder that simultaneously addresses these three criteria is complicated because optimizing for one criterion may lead to undesirable changes in the other criteria. Unfortunately, there has been little work to date to quantify how decoder design simultaneously affects these performance characteristics. Here, we systematically explore the trade-off between accuracy, response latency, and multi-functionality for discrete movement classification using two different decoding strategies-a support vector machine (SVM) classifier which represents the current state-of-the-art for discrete movement classification in laboratory demonstrations and a proposed deep neural network (DNN) framework. We utilized historical intracortical recordings from a human tetraplegic study participant, who imagined performing several different hand and finger movements. For both decoders, we found that response time increases (i.e., slower reaction) and accuracy decreases as the number of functions increases. However, we also found that both the increase of response times and the decline in accuracy with additional functions is less for the DNN than the SVM. We also show that data preprocessing steps can affect the performance characteristics of the two decoders in drastically different ways. Finally, we evaluated the performance of our tetraplegic participant using the DNN decoder in real-time to control functional electrical stimulation (FES) of his paralyzed forearm. We compared his

Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off

PLOS ONE, 2020

Electroencephalography (EEG) datasets are often small and high dimensional, owing to cumbersome recording processes. In these conditions, powerful machine learning techniques are essential to deal with the large amount of information and overcome the curse of dimensionality. Artificial Neural Networks (ANNs) have achieved promising performance in EEG-based Brain-Computer Interface (BCI) applications, but they involve computationally intensive training algorithms and hyperparameter optimization methods. Thus, an awareness of the quality-cost trade-off, although usually overlooked, is highly beneficial. In this paper, we apply a hyperparameter optimization procedure based on Genetic Algorithms to Convolutional Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and Recurrent Neural Networks (RNNs), all of them purposely shallow. We compare their relative quality and energy-time cost, but we also analyze the variability in the structural complexity of networks of the same type with similar accuracies. The experimental results show that the optimization procedure improves accuracy in all models, and that CNN models with only one hidden convolutional layer can equal or slightly outperform a 6-layer Deep Belief Network. FFNN and RNN were not able to reach the same quality, although the cost was significantly lower. The results also highlight the fact that size within the same type of network is not necessarily correlated with accuracy, as smaller models can and do match, or even surpass, bigger ones in performance. In this regard, overfitting is likely a contributing factor since deep learning approaches struggle with limited training examples.

Improving cross-subject classification performance of motor imagery signals: a data augmentation-focused deep learning framework

Machine Learning: Science and Technology, 2024

Motor imagery brain-computer interfaces (MI-BCIs) have gained a lot of attention in recent years thanks to their potential to enhance rehabilitation and control of prosthetic devices for individuals with motor disabilities. However, accurate classification of motor imagery signals remains a challenging task due to the high inter-subject variability and non-stationarity in the electroencephalogram (EEG) data. In the context of MI-BCIs, with limited data availability, the acquisition of EEG data can be difficult. In this study, several data augmentation techniques have been compared with the proposed data augmentation technique adaptive cross-subject segment replacement (ACSSR). This technique, in conjunction with the proposed deep learning framework, allows for a combination of similar subject pairs to take advantage of one another and boost the classification performance of MI-BCIs. The proposed framework features a multi-domain feature extractor based on common spatial patterns with a sliding window and a parallel two-branch convolutional neural network. The performance of the proposed methodology has been evaluated on the multi-class BCI Competition IV Dataset 2a through repeated 10-fold cross-validation. Experimental results indicated that the implementation of the ACSSR method (80.47%) in the proposed framework has led to a considerable improvement in the classification performance compared to the classification without data augmentation (77.63%), and other fundamental data augmentation techniques used in the literature. The study contributes to the advancements for the development of effective MI-BCIs by showcasing the ability of the ACSSR method to address the challenges in motor imagery signal classification tasks.