Appropriate Hydration Can Make a Difference (original) (raw)

Water as an essential nutrient: the physiological basis of hydration

How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.

Human Hydration Indices: Acute and Longitudinal Reference Values

International Journal of Sport Nutrition and Exercise Metabolism, 2010

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 ...

Water, hydration, and health

Nutrition Reviews, 2010

This review examines the current knowledge of water intake as it pertains to human health, including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, and the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient, the absence of which will be lethal within days. Water's importance for the prevention of nutrition-related noncommunicable diseases has received more attention recently because of the shift toward consumption of large proportions of fluids as caloric beverages. Despite this focus, there are major gaps in knowledge related to the measurement of total fluid intake and hydration status at the population level; there are also few longer-term systematic interventions and no published randomized, controlled longer-term trials. This review provides suggestions for ways to examine water requirements and encourages more dialogue on this important topic.

Acute and chronic effects of hydration status on health

Nutrition Reviews, 2015

Maintenance of fluid and electrolyte balance is essential to healthy living as dehydration and fluid overload are associated with morbidity and mortality. This review presents the current evidence for the impact of hydration status on health. The Web of Science, MEDLINE, PubMed, and Google Scholar databases were searched using relevant terms. Randomized controlled trials and large cohort studies published during the 20 years preceding February 2014 were selected. Older articles were included if the topic was not covered by more recent work. Studies show an association between hydration status and disease. However, in many cases, there is insufficient or inconsistent evidence to draw firm conclusions. Dehydration has been linked with urological, gastrointestinal, circulatory, and neurological disorders. Fluid overload has been linked with cardiopulmonary disorders, hyponatremia, edema, gastrointestinal dysfunction, and postoperative complications. There is a growing body of evidence that links states of fluid imbalance and disease. However, in some cases, the evidence is largely associative and lacks consistency, and the number of randomized trials is limited.

Hydration and health: a review

Nutrition Bulletin, 2010

Water is essential for life and maintaining optimal levels of hydration is important for humans to function well. Water makes up a large proportion of our body weight (60% on average), distributed between the intracellular (inside cells) and extracellular (water in the blood and in between cells) compartments. Water is the major component of body fluids, such as blood, synovial fluid (fluid in the joints), saliva and urine, which perform vital functions in the body. The concentration of solutes (osmolality) in body fluids is closely controlled, and even very small changes in osmolality trigger a physiological response; either to increase body water by reducing urinary output and stimulating thirst; or to excrete excess water as urine. Generally, body water is maintained within narrow limits. However, if water losses are not sufficiently replaced, dehydration occurs. Extreme dehydration is very serious and can be fatal. More mild dehydration (about 2% loss of body weight) can result in headaches, fatigue and reduced physical and mental performance. It is also possible to consume too much water and in rare cases this can result in hyponatraemia (low levels of sodium in the blood).

Physical activity, hydration and health

Nutricion hospitalaria, 2014

Since the beginning of mankind, man has sought ways to promote and preserve health as well as to prevent disease. Hydration, physical activity and exercise are key factors for enhancing human health. However, either a little dose of them or an excess can be harmful for health maintenance at any age. Water is an essential nutrient for human body and a major key to survival has been to prevent dehydration. However, there is still a general controversy regarding the necessary amount to drink water or other beverages to properly get an adequate level of hydration. In addition, up to now the tools used to measure hydration are controversial. To this end, there are several important groups of variables to take into account such as water balance, hydration biomarkers and total body water. A combination of methods will be the most preferred tool to find out any risk or situation of dehydration at any age range. On the other hand, physical activity and exercise are being demonstrated to promote health, avoiding or reducing health problems, vascular and inflammatory disea ses and helping weight management. Therefore, physical activity is also being used as a pill within a therapy to promote health and reduce risk diseases, but as in the case of drugs, dose, intensity, frequency, duration and precautions have to be evaluated and taken into account in order to get the maximum effectiveness and success of a treatment. On the other hand, sedentariness is the opposite concept to physical activity that has been recently recognized as an important factor of lifestyle involved in the obesogenic environment and consequently in the risk of the non-communicable diseases. In view of the literature consulted and taking into account the expertise of the authors, in this review a Decalogue of global recommendations is included to achieve an adequate hydration and physical activity status to avoid overweight/obesity consequences.

Are we being drowned in hydration advice? Thirsty for more?

Extreme physiology & medicine, 2014

Hydration pertains simplistically to body water volume. Functionally, however, hydration is one aspect of fluid regulation that is far more complex, as it involves the homeostatic regulation of total body fluid volume, composition and distribution. Deliberate or pathological alteration of these regulated factors can be disabling or fatal, whereas they are impacted by exercise and by all environmental stressors (e.g. heat, immersion, gravity) both acutely and chronically. For example, dehydration during exercising and environmental heat stress reduces water volume more than electrolyte content, causing hyperosmotic hypohydration. If exercise continues for many hours with access to food and water, composition returns to normal but extracellular volume increases well above baseline (if exercising upright and at low altitude). Repeating bouts of exercise or heat stress does likewise. Dehydration due to physical activity or environmental heat is a routine fluid-regulatory stress. How to ...