Photosynthetic energy storage efficiency in biofilms determined by photoacoustics (original) (raw)

Mucopolysaccharidosis type IIIB may predominantly present with an attenuated clinical phenotype

Journal of Inherited Metabolic Disease, 2010

Mucopolysaccharidosis type IIIB (MPS IIIB, Sanfilippo syndrome type B) is a lysosomal storage disorder caused by deficiency of the enzyme N-acetyl-α-D-glucosaminidase (NAGLU). Information on the natural course of MPS IIIB is scarce but much needed in view of emerging therapies. To improve knowledge on the natural course, data on all 52 MPS IIIB patients ever identified by enzymatic studies in the Netherlands were gathered. Clinical data on 44 patients could be retrieved. Only a small number (n = 9; 21%) presented with a classical MPS III phenotype; all other patients showed a much more attenuated course of the disease characterized by a significantly slower regression of intellectual and motor abilities. The majority of patients lived well into adulthood. First signs of the disease, usually mild developmental delay, were observed at a median age of 4 years. Subsequently, patients showed a slowing and eventually a stagnation of development. Patients with the attenuated phenotype had a stable intellectual disability for many years. Molecular analysis was performed in 24 index patients. The missense changes p.R643C, p.S612G, p.E634K, and p.L497V were exclusively found in patients with the attenuated phenotype. MPS IIIB comprises a remarkably wide spectrum of disease severity, and an unselected cohort including all Dutch patients showed a large proportion (79%) with an attenuated phenotype. MPS IIIB must be considered in patients with a developmental delay, even in the absence of a progressive decline in intellectual abilities. A key feature, necessitating metabolic studies, is the coexistence of behavioral problems.

Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes

European Journal of Human Genetics, 1999

α-N-acetylglucosaminidase, a lysosomal enzyme involved in the degradation of heparan sulphate. Accumulation of the substrate in lysosomes leads to degeneration of the central nervous system with progressive dementia often combined with hyperactivity and aggressive behaviour. Age of onset and rate of progression vary considerably, whilst diagnosis is often delayed due to the absence of the pronounced skeletal changes observed in other mucopolysaccharidoses. Cloning of the gene and cDNA encoding α-N-acetylglucosaminidase enabled a study of the molecular basis of this syndrome. We were able to identify 31 mutations, 25 of them novel, and two polymorphisms in the 40 patients mostly of Australasian and Dutch origin included in this study. The observed allellic heterogeneity reflects the wide spectrum of clinical phenotypes reported for MPS IIIB patients. The majority of changes are missense mutations; also four nonsense and nine frameshift mutations caused by insertions or deletions were identified. Only five mutations were found in more than one patient and the observed frequencies are well below those observed for the common mutations in MPS IIIA. R643C and R297X each account for around 20% of MPS IIIB alleles in the Dutch patient group, whilst R297X, P521L, R565W and R626X each have a frequency of about 6% in Australasian patients. R643C seems to be a Dutch MPS IIIB allele and clearly confers the attenuated phenotype. One region of the gene shows a higher concentration of mutations, probably reflecting the instability of this area which contains a direct repeat. Several arginine residues seem to be 'hot-spots' for mutations, being affected by two or three individual base pair exchanges. Sanfilippo type B syndrome B Weber et al t 43

Is the MPS I Medical Phenotype Associated with Specific Causative Factors?

2012

Objectives: Mucopolysaccharidosis type I (MPS I), a lysosomal disease caused by deficiency of alpha-L-iduronidase affects multiple organ systems. We seek to find factors that are associated with differing medical phenotypes. We hypothesize that age at visit, treatment (enzyme replacement therapy ERT or hematopoietic cell transplant HCT), and genotype affect medical phenotypes. Methods: 45 patients from MPS Longitudinal study of the Lysosomal Disease Network included, 28 Hurler treated with HCT and 17 attenuated treated with ERT. The HCT group was divided into an older and younger group (6 years and over and under 6 years of age). Patients 6 years and over were compared between HCT and ERT groups. Genotypes were classified as 1) Homozygous nonsense-NH, 2) Nonsense/deletion or splice site-NDS, 3)Nonsense/missense-NM, 4) Other combinations of missense, deletion, splice site abnormalities-MDS. The HCT group included all of the NH and NDS groups and 2 patients from the NM group. The ERT ...

Clinical and genetic spectrum of Sanfilippo type C (MPS IIIC) disease in The Netherlands

Molecular Genetics and Metabolism, 2008

Mucopolysaccharidosis IIIC (MPS IIIC, Sanfilippo C syndrome) is a lysosomal storage disorder caused by deficiency of the lysosomal enzyme acetyl-CoA:a-glucosaminide N-acetyltransferase (HGSNAT). We performed a clinical study on 29 Dutch MPS IIIC patients and determined causative mutations in the recently identified HGSNAT gene. Psychomotor development was reported to be normal in all patients during the first year of life. First clinical signs were usually noted between 1 and 6 years (mean 3.5 years), and consisted of delayed psychomotor development and behavioral problems. Other symptoms included sleeping and hearing problems, recurrent infections, diarrhoea and epilepsy. Two sisters had attenuated disease and did not have symptoms until the third decade. Mean age of death was 34 years (range 25-48). Molecular analysis revealed mutations in both alleles for all patients except one. Altogether 14 different mutations were found: two splice site mutations, one frame shift mutation due to an insertion, three nonsense mutations and eight missense mutations. Two mutations, p.R344C and p.S518F, were frequent among probands of Dutch origin representing 22.0% and 29.3%, respectively, of the mutant alleles. This study demonstrates that MPS IIIC has a milder course than previously reported and that both severity and clinical course are highly variable even between sibs, complicating prediction of the clinical phenotype for individual patients. A clear phenotype-genotype correlation could not be established, except that the mutations p.G262R and p.S539C were only found in two sisters with late-onset disease and presumably convey a mild phenotype.

The Mutation p.Ser298Pro in the sulphamidase gene (SGSH) is associated with a slowly progressive clinical phenotype in mucopolysaccharidosis type IIIA (Sanfilippo A Syndrome)

Human Mutation, 2008

in the N-sulfoglucosamine sulfohydrolase (SGSH) gene and the resulting defective lysosomal degradation of the glycosaminoglycan heparan sulfate. The onset and progression of the disease are highly variable. Seventy-five mutations distributed over the SGSH gene have been described. We here report on the analysis of the natural course of the disease in 54 MPS IIIA patients through the use of a detailed questionnaire and four-point scoring system and an examination of the underlying mutations. By assessing the degree of developmental regression over time a group of seven patients with a slowly progressive course of the disease were identified. In these seven patients and in 3 other mildly affected patients the missense mutation c.892T>C (p.Ser298Pro) was found on one allele. These patients showed a lower frequency and later onset of the typical symptoms of the disease. The onset of regression in speech abilities and cognitive functions were delayed by 0.7 and 0.8 years, respectively, and the onset of regression of motor functions occurred 6.1 years later than in all other MPS IIIA patients. Severe regression in speech, cognitive and motor functions were delayed by 5, 5.9, and 11.2 years, respectively. These data suggest that in MPS IIIA patients carrying the mutation p.Ser298Pro a slowly progressive phenotype can be predicted and this may have an important impact on parental counselling and therapeutic interventions.

Mutation Frequency of Three Neurodegenerative Lysosomal Storage Diseases: From Screening to Treatment?

Archives of medical research, 2017

The ascertainment of mutation frequencies in the general population may have impact on the population's wellbeing and respective healthcare services. Furthermore, it may help define which approaches will be more effective for certain patients based on the genetic cause of disease. Determine the frequency of three mutations, known to be a major cause of three distinct Lysosomal Storage Diseases (LSDs). The following pre-requisites were met: each mutation accounted for over 55% of the disease alleles among previously reported unrelated patients, all three diseases were among the most prevalent LSDs in the population under study, they all involved devastating deterioration of the nervous system, lacked curative treatment and may be fatal in childhood or adolescence. The anonymous samples used in this study were representative of the whole population; mutations were tested by PCR based methods, positive results were further confirmed. The diseases studied were Mucopolysaccharidosis ...

Treatment reduces or stabilizes brain imaging abnormalities in patients with MPS I and II

Molecular Genetics and Metabolism, 2009

Background: The mucopolysaccharidoses (MPSs) are a family of lysosomal storage disorders caused by impaired glycosaminoglycan degradation. Characteristic brain imaging abnormalities are seen in MPS patients. This study aims to determine the effects of hematopoietic stem cell transplantation (HSCT) and/or intravenous enzyme replacement therapy (ERT) on these abnormalities. Methods: A retrospective chart and brain imaging study review was conducted of MPS types I and II patients with brain magnetic resonance imaging (MRI) performed at, and following, initiation of treatment. White matter abnormalities, dilated perivascular spaces, corpus callosal abnormalities, and ventriculomegaly were scored by three independent neuroradiologists blinded to cognitive status, date of treatment initiation, and type(s) of treatment. Results: Five patients were identified: three patients with MPS I and two with MPS II. Duration of followup ranged from 13 to 51 months. One patient had severe MPS I (genotype W402X/35del12) and received ERT followed by HSCT. The remaining patients had ERT only. The other two MPS I patients were cognitively normal siblings (genotype P533R/P533R) with an intermediate phenotype. One MPS II patient had moderate cognitive impairment without regression (genotype 979insAGCA); the other (genotype R8X) had normal cognition. Results: There was very little inter-observer variation in MRI scoring. The greatest abnormalities for each patient were found at initial MRI. All patients, including the ERT-only patients, demonstrated improved or unchanged MRI scores following treatment. Severity of white matter abnormalities or dilated perivascular spaces did not correlate with cognitive impairment; as such, extensive pre-treatment MRI abnormalities were noted in the older, cognitively normal MPS I sibling. In comparison, his younger sibling had only mild MRI abnormalities at the same age, after receiving 4 years of ERT. Conclusions: This study represents one of the first to document the CNS effects of ERT in MPS patients utilizing serial brain MR imaging studies, and raises several important observations. Brain MRI abnormalities typically become more pronounced with age; initiation of ERT or HSCT reversed or stabilized this trend in the MPS patients studied. In addition, earlier initiation of treatment resulted in decreased severity of imaging abnormalities. Possible mechanisms for these observations include improved cerebrospinal fluid dynamics, reduced central nervous system glycosaminoglycan storage via efflux through the blood-brain barrier (BBB), repair of damaged BBB, reduction in CNS inflammation, or ERT permeability through the BBB.