Radical Scavenging Capability Influences the Multifarious Therapeutic Tendencies of Phyto-Engineered CuO Nanostructures (original) (raw)
Journal of Inorganic and Organometallic Polymers and Materials, 2021
Abstract
In this study, physicochemical and functional characterization of phyto-mediated copper oxide nanoparticles (CuO NPs) using three plants viz. Alternanthera pungens (Ap), Adiantum incisum (Ai) and Trichodesma indicum (Ti) were carried out in comparison with the vehicle control (Cu-V) produced under similar experimental conditions. CuO NPs revealed UV–Vis spectra in the range of 350–450 nm with distinct effect of different plants on their morphological and chemical characteristics as analyzed via SEM and FTIR. However, nanoparticle sizes (15–17 nm) as deduced via XRD were not influenced by the plants selected. Utilizing the biosynthesized CuO NPs, microbicidal assessment against selected bacterial and fungal strains revealed profound results against several microorganisms, with predominant action by Cu-Ap against Aspergillus fumigatus (MIC: 9.21 ± 0.5 µg/ml). Additionally, Cu-Ap but not Cu-V disclosed outstanding performance revealing noticeable inhibitory concentrations IC50 for anti...
Azra Yasmin hasn't uploaded this paper.
Let Azra know you want this paper to be uploaded.
Ask for this paper to be uploaded.