Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry (original) (raw)
Abstract
Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and METHODS IN CELL BIOLOGY, VOL 102
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (99)
- Ai, H. W., Hazelwood, K. L., Davidson, M. W., and Campbell, R. E. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat. Methods 5, 401-403.
- Banning, C., Votteler, J., Hoffmann, D., Koppensteiner, H., Warmer, M., Reimer, R., Kirchhoff, F., Schubert, U., Hauber, J., Schindler, M. (2010). A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5, e9344.
- Bayle, V., Nussaume, L., and Bhat, R. A. (2008). Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol. 148, 51-60.
- Bogdanov, A. M., Bogdanova, E. A., Chudakov, D. M., Gorodnicheva, T. V., Lukyanov, S., Lukyanov, K. A. (2009). Cell culture medium affects GFP photostability: a solution. Nat. Methods 6, 859-860.
- Bulina, M. E., Chudakov, D. M., Britanova, O. V., Yanushevich, Y. G., Staroverov, D. B., Chepurnykh, T. V., Merzlyak, E. M., Shkrob, M. A., Lukyanov, S., Lukyanov, K. A. (2006). A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95-99.
- Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877-7882.
- Carlson, H. J., Cotton, D. W., and Campbell, R. E. (2010). Circularly permuted monomeric red fluorescent proteins with new termini in the beta-sheet. Protein Sci. 19, 1490-1499.
- Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802-805.
- Chan, F. K., Siegel, R. M., Zacharias, D., Swofford, R., Holmes, K. L., Tsien, R. Y., Lenardo, M. J. (2001). Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44, 361-368.
- Chu, J., Zhang, Z., Zheng, Y., Yang, J., Qin, L., Lu, J., Huang, Z. L., Zeng, S., Luo, Q. (2009). A novel far- red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens. Bioelectron. 25, 234-239.
- Chudakov, D. M., Matz, M. V., Lukyanov, S., and Lukyanov, K. A. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103-1163.
- Day, R. N., and Davidson, M. W. (2009). The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887-2921.
- van Dongen, E. M., Evers, T. H., Dekkers, L. M., Meijer, E. W., Klomp, L. W., Merkx, M. (2007). Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J. Am. Chem. Soc. 129, 3494-3495.
- Domingo, B., Sabariegos, R., Picazo, F., and Llopis, J. (2007). Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc. Res. Tech. 70, 1010-1021.
- Drobizhev, M., Tillo, S., Makarov, N. S., Hughes, T. E., and Rebane, A. (2009). Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J. Phys. Chem. B 113, 855-859.
- Evers, T. H., van Dongen, E. M., Faesen, A. C., Meijer, E. W., and Merkx, M. (2006). Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45, 13183-13192.
- Fan, J. Y., Cui, Z. Q., Wei, H. P., Zhang, Z. P., Zhou, Y. F., Wang, Y. P., Zhang, X. E. (2008). Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein inter- actions in living cells. Biochem. Biophys. Res. Commun. 367, 47-53.
- Fischer, M., Haase, I., Wiesner, S., and M€ uller-Taubenberger, A. (2006). Visualizing cytoskeleton dynamics in mammalian cells using a humanized variant of monomeric red fluorescent protein. FEBS Lett. 580, 2495-2502.
- Galperin, E., Verkhusha, V. V., and Sorkin, A. (2004). Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat. Methods 1, 209-217.
- Gautam, S. G., Perron, A., Mutoh, H., and Kn€ opfel, T. (2009). Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front. Neuroengineering. 2, 14.
- Goedhart, J., Vermeer, J. E., Adjobo-Hermans, M. J., van Weeren, L., and Gadella Jr., T. W. (2007). Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS One 2, e1011.
- Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188-29194.
- Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E., Yarbrough, D. K., Chu, S., Xi, L., Boxer, S. G., Montrose, M. H., Remington, S. J. (2002). Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41, 15477-15488.
- Hawley, T. S., Herbert, D. J., Eaker, S. S., and Hawley, R. G. (2004). Multiparameter flow cytometry of fluorescent protein reporters. Methods Mol. Biol. 263, 219-238.
- Hawley, T. S., Telford, W. G., Ramezani, A., and Hawley, R. G. (2001). Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. Biotechniques 30, 1028-1034.
- He, L., Bradrick, T. D., Karpova, T. S., Wu, X., Fox, M. H., Fischer, R., McNally, J. G., Knutson, J. R., Grammer, A. C., Lipsky, P. E. (2003a). Flow cytometric measurement of fluorescence resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single laser excitation at 458 nm. Cytometry A 53, 39-54.
- He, L., Olson, D. P., Wu, X., Karpova, T. S., McNally, J. G., Lipsky, P. E. (2003b). A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-YFP fluorescence resonance energy transfer (FRET). Cytometry A 55, 71-85.
- He, L., Wu, X., Simone, J., Hewgill, D., and Lipsky, P. E. (2005). Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP-YFP-mRFP FRET detected by flow cytometry. Nucleic Acids Res. 33, e61.
- Jach, G., Pesch, M., Richter, K., Frings, S., and Uhrig, J. F. (2006). An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3, 597-600.
- Jain, R. K., Joyce, P. B., Molinete, M., Halban, P. A., and Gorr, S. U. (2001). Oligomerization of green fluorescent protein in the secretory pathway of endocrine cells. Biochem. J. 360, 645-649.
- Jayaraman, S., Haggie, P., Wachter, R. M., Remington, S. J., and Verkman, A. S. (2000). Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275, 6047-6050.
- Johansson, D. X., Brismar, H., and Persson, M. A. (2007). Fluorescent protein pair emit intracellular FRET signal suitable for FACS screening. Biochem. Biophys. Res. Commun. 352, 449-455.
- Johnson, D. E., Ai, H. W., Wong, P., Young, J. D., Campbell, R. E., Casey, J. R. (2009). Red fluorescent protein pH biosensor to detect concentrative nucleoside transport. J. Biol. Chem. 284, 20499-20511.
- Kamio, N., Hirai, H., Ashihara, E., Tenen, D. G., Maekawa, T., Imanishi, J. (2010). Use of bicistronic vectors in combination with flow cytometry to screen for effective small interfering RNA target sequences. Biochem. Biophys. Res. Commun. 393, 498-503.
- Kapoor, V., Karpov, V., Linton, C., Subach, F. V., Verkhusha, V. V., Telford, W. G. (2008). Solid state yellow and orange lasers for flow cytometry. Cytometry A 73, 570-577.
- Kapoor, V., Subach, F. V., Kozlov, V. G., Grudinin, A., Verkhusha, V. V., Telford, W. G. (2007). New lasers for flow cytometry: filling the gaps. Nat. Methods 4, 678-679.
- Karasawa, S., Araki, T., Nagai, T., Mizuno, H., and Miyawaki, A. (2004). Cyan-emitting and orange- emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381, 307-312.
- Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37, 465-487.
- Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577-581.
- Kredel, S., Oswald, F., Nienhaus, K., Deuschle, K., R€ ocker, C., Wolff, M., Heilker, R., Nienhaus, G. U., Wiedenmann, J. (2009). mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4, e4391.
- Kremers, G. J., Goedhart, J., van den Heuvel, D. J., Gerritsen, H. C., and Gadella Jr., T. W. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46, 3775-3783 http://physrev.physiology.org/cgi/external\_ref?access\_num=10.1021% 2Fbi0622874&link_type=DOI.
- Kremers, G. J., Goedhart, J., van Munster, E. B., and Gadella Jr., T. W. (2006). Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. Biochemistry 45, 6570-6580.
- Li, Y., Sierra, A. M., Ai, H. W., and Campbell, R. E. (2008). Identification of sites within a monomeric red fluorescent protein that tolerate peptide insertion and testing of corresponding circular permutations. Photochem. Photobiol. 84, 111-119.
- Lin, M. Z., McKeown, M. R., Ng, H. L., Aguilera, T. A., Shaner, N. C., Campbell, R. E., Adams, S. R., Gross, L. A., Ma, W., Alber, T., Tsien, R. Y. (2009). Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 16, 1169-1179.
- Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., Lukyanov, S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969-973.
- Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W., Chudakov, D. M. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555-557.
- Mishin, A. S., Subach, F. V., Yampolsky, I. V., King, W., Lukyanov, K. A., Verkhusha, V. V. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemsitry 47, 4666-4673.
- Morell, M., Espargaro, A., Aviles, F. X., and Ventura, S. (2008). Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat. Protoc. 3, 22-33.
- Morozova, K. S., Piatkevich, K. D., Gould, T. J., Zhang, J., Bewersdorf, J., Verkhusha, V. V. (2010). Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13-L15.
- Mutoh, H., Perron, A., Dimitrov, D., Iwamoto, Y., Akemann, W., Chudakov, D. M., Kn€ opfel, T. (2009). Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4, e4555.
- Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87-90.
- Nagai, T., and Miyawaki, A. (2004). A high-throughput method for development of FRET-based indica- tors for proteolysis. Biochem. Biophys. Res. Commun. 319, 72-77.
- Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A. (2004). Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554-10559.
- Nguyen, A. W., and Daugherty, P. S. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355-360.
- Piatkevich, K. D., Efremenko, E. N., Verkhusha, V. V., and Varfolomeev, S. D. (2010a). Red fluorescent proteins and their properties. Russ. Chem. Rev. 79, 243-258.
- Piatkevich, K. D., Hulit, J., Subach, O. M., Wu, B., Abdulla, A., Segall, J. E., Verkhusha, V. V. (2010b). Monomeric red fluorescent proteins with a large Stokes shift. Proc. Natl. Acad. Sci. USA 107, 5369-5374.
- Piatkevich, K. D., Malashkevich, V. N., Almo, S. C., and Verkhusha, V. V. (2010c). Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift. J. Am. Chem. Soc. 132, 10762-10770.
- Piatkevich, K. D., and Verkhusha, V. V. (2010). Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr. Opin. Chem. Biol. 14, 23-29.
- Piljic, A., and Schultz, C. (2008). Simultaneous recording of multiple cellular events by FRET. ACS Chem. Biol. 3, 156-160.
- Pletnev, S., Subach, F. V., Dauter, Z., Wlodawer, A., and Verkhusha, V. V. (2010). Understanding blue-to- red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. J. Am. Chem. Soc. 132, 2243-2253.
- Rahimi, Y., Shrestha, S., Banerjee, T., and Deo, S. K. (2007). Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal. Biochem. 370, 60-67.
- Rizzo, M. A., Davidson, M. W., and Piston, D. W. (2009). Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb. Protoc. 2009: pdb.top64.
- Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., Miyawaki, A. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487-498.
- Shagin, D. A., Barsova, E. V., Yanushevich, Y. G., Fradkov, A. F., Lukyanov, K. A., Labas, Y. A., Semenova, T. N., Ugalde, J. A., Meyers, A., Nunez, J. M., Widder, E. A., Lukyanov, S. A., Matz, M. V. (2004). GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841-850.
- Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567-1572.
- Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545-551.
- Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., Chudakov, D. M. (2007). Bright far- red fluorescent protein for whole-body imaging. Nat. Methods 4, 741-746.
- Shcherbo, D., Murphy, C. S., Ermakova, G. V., Solovieva, E. A., Chepurnykh, T. V., Shcheglov, A. S., Verkhusha, V. V., Pletnev, V. Z., Hazelwood, K. L., Roche, P. M., Lukyanov, S., Zaraisky, A. G., Davidson, M. W., Chudakov, D. M. (2009a). Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567-574.
- Shcherbo, D., Souslova, E. A., Goedhart, J., Chepurnykh, T. V., Gaintzeva, A., Shemiakina, I. I., Gadella, T. W., Lukyanov, S., Chudakov, D. M. (2009b). Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9, 24.
- Shu, X., Royant, A., Lin, M. Z., Aguilera, T. A., Lev-Ram, V., Steinbach, P. A., Tsien, R. Y. (2009). Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804-807.
- Shyu, Y. J., Liu, H., Deng, X., and Hu, C. D. (2006). Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61-66.
- Shyu, Y. J., Suarez, C. D., and Hu, C. D. (2008). Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET. Proc. Natl. Acad. Sci. USA 105, 151-156.
- Siegel, R. M., Chan, F. K., Zacharias, D. A., Swofford, R., Holmes, K. L., Tsien, R. Y., Lenardo, M. J. (2000). Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Science STKE 2000(38), pl1.
- Snapp, E. (2005). Design and use of fluorescent fusion proteins in cell biology. Curr. Protoc. Cell Biol. Chapter 21, Unit 21.4, 21.4.1-21.4.13.
- Stepanenko, O. V., Verkhusha, V. V., Kazakov, V. I., Shavlovsky, M. M., Kuznetsova, I. M., Uversky, V. N., Turoverov, K. K. (2004). Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, dimer2 and DsRed. Biochemistry 43, 14913-14923.
- Strack, R. L., Bhattacharyya, D., Glick, B. S., and Keenan, R. J. (2009a). Noncytotoxic orange and red/ green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnol. 9, 32.
- Strack, R. L., Hein, B., Bhattacharyya, D., Hell, S. W., Keenan, R. J., Glick, B. S. (2009b). A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279-8281.
- Strack, R. L., Strongin, D. E., Bhattacharyya, D., Tao, W., Berman, A., Broxmeyer, H. E., Keenan, R. J., Glick, B. S. (2008). A noncytotoxic DsRed variant for whole-cell labeling. Nat. Methods 5, 955-957.
- Subach, F. V., Patterson, G. H., Manley, S., Gillette, J. M., Lippincott-Schwartz, J., Verkhusha, V. V. (2009a). Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153-159.
- Subach, F. V., Subach, O. M., Gundorov, I. S., Morozova, K. S., Piatkevich, K. D., Cuervo, A. M., Verkhusha, V. V. (2009b). Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat. Chem. Biol. 5, 118-126.
- Subach, O. M., Malashkevich, V. N., Zencheck, W. D., Morozova, K. S., Piatkevich, K. D., Almo, S. C., Verkhusha, V. V. (2010). Structural characterization of acylimine-containing blue and red chromo- phores in mTagBFP and TagRFP fluorescent proteins. Chem. Biol. 17, 333-341.
- Telford, W. G., Subach, F. V., and Verkhusha, V. V. (2009). Super-continuum white light lasers for flow cytometry. Cytometry A 75, 450-459.
- Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., Siebert, P. (2000). ''Fluorescent timer'': protein that changes color with time. Science 290, 1585-1588.
- Tsutsui, H., Karasawa, S., Okamura, Y., and Miyawaki, A. (2008). Improving membrane voltage mea- surements using FRET with new fluorescent proteins. Nat. Methods 5, 683-685.
- Tsuboi, T., Kitaguchi, T., Karasawa, S., Fukuda, M., and Miyawaki, A. (2010). Age-dependent preferen- tial dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein. Mol. Biol. Cell. 21, 87-94.
- Tramier, M., Zahid, M., Mevel, J. C., Masse, M. J., and Coppey-Moisan, M. (2006). Sensitivity of CFP/ YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc. Res. Tech. 69, 933-939.
- Verkhusha, V. V., Chudakov, D. M., Gurskaya, N. G., Lukyanov, S., and Lukyanov, K. A. (2004). Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem. Biol. 11, 845-854.
- Verkhusha, V. V., Matz, M. V., Sakurai, T., and Lukyanov, K. A. (2003a). GFP-like fluorescent proteins and chromoproteins of the class Anthozoa. In ''Protein Structures: Kaleidoscope of Structural Properties and Functions,'' (and V. N. Uversky, ed.), pp. 405-439. Research Signpost, Kerala, India.
- Verkhusha, V. V., Pozhitkov, A. E., Smirnov, S. A., Borst, J. W., van Hoek, A., Klyachko, N. L., Levashov, A. V., Visser, A. J. (2003b). Effect of high pressure and reversed micelles on the fluorescent proteins. Biochim. Biophys. Acta 1622, 192-195.
- Vrzheshch, P. V., Akovbian, N. A., Varfolomeyev, S. D., and Verkhusha, V. V. (2000). Denaturation and partial renaturation of a tightly tetramerized DsRed protein under mildly acidic conditions. FEBS Lett. 487, 203-208.
- van Wageningen, S., Pennings, A. H., van der Reijden, B. A., Boezeman, J. B., de Lange, F., Jansen, J. H. (2006). Isolation of FRET-positive cells using single 408-nm laser flow cytometry. Cytometry A 69, 291-298.
- Wang, L., Jackson, W. C., Steinbach, P. A., and Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745-16749.
- Wu, X., Simone, J., Hewgill, D., Siegel, R., Lipsky, P. E., He, L. (2006). Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytometry A 69, 477-486.
- Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., Fradkov, A. F., Gurskaya, N. G., Bulina, M. E., Lukyanov, K. A., Lukyanov, S. A. (2002). A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511, 11-14.
- You, X., Nguyen, A. W., Jabaiah, A., Sheff, M. A., Thorn, K. S., Daugherty, P. S. (2006). Intracellular protein interaction mapping with FRET hybrids. Proc. Natl. Acad. Sci. USA 103, 18458-18463.
- Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913-916.
- Zapata-Hommer, O., and Griesbeck, O. (2003). Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnol. 3, 5.
- Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J., and Muzyczka, N. (1996). A ''humanized'' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646-4654.
- Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415.