The effect of polyunsaturated fatty acids on bone health (original) (raw)
Related papers
The Impact of Omega-3 Fatty Acids on Osteoporosis
Current Pharmaceutical Design, 2009
The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-), modulation of peroxisome proliferators-activated receptor (PPAR). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.
Investigating the Role of Polyunsaturated Fatty Acids in Bone Development Using Animal Models
Molecules, 2013
Incorporating n-3 polyunsaturated fatty acids (PUFA) in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA) remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA) and long chain (EPA and DHA) n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.
A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids
2013
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone res...
Review Investigating the Role of Polyunsaturated Fatty Acids in Bone Development Using Animal Models
2013
Incorporating n-3 polyunsaturated fatty acids (PUFA) in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA) remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA) and long chain (EPA and DHA) n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.
Long-Chain Polyunsaturated Fatty Acids and the Regulation of Bone Metabolism
Experimental Biology and Medicine, 2007
The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed “dietary essential,” the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in...
A New Insight to Bone Turnover: Role of -3 Polyunsaturated Fatty Acids
The Scientific World Journal, 2013
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially theω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover.Objectives. This review summarizes findings from bothin vivoandin vitrostudies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity.Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factorκβ(RANK), a receptor found on the osteoclast, causing bone resorption, w...
Polyunsaturated Fatty Acids and Their Relation with Bone and Muscle Health in Adults
2013
Age-related bone and muscle loss are major public health problems. Investigational therapies to reduce these losses include anti-inflammatory dietary supplementations, such as polyunsaturated fatty acids (PUFA). Surprisingly, this topic has received little attention in the osteoporosis community. Recent research highlights the role of PUFA in inflammatory regulation of bone remodeling via cellular pathways. Emerging research suggests significant roles for PUFA in reducing bone and muscle loss with aging; however, findings are conflicted for PUFA and fracture risk. Limited studies suggest a relation between higher omega-3 FA and better muscle/bone in older adults. This review highlights new research since 2008 and synthesizes our current understanding of PUFA in relation to bone and muscle. Across study designs, evidence indicates that PUFA has positive effects upon bone. As data are sparse, future clinical trials and prospective studies are important to determine the long term benefits of PUFA supplementation upon bone and muscle outcomes.
Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population?
Bone, 2021
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
British Journal of Nutrition, 2003
The effect of polyunsaturated fatty acids (PUFA), in particular conjugated linoleic acid (CLA), on Ca and bone metabolism is unclear. In a 2 × 2 factorial design study, forty male 4-week-old rats were fed a control diet containing 70 g added fat (soyabean oil (SBO; n–6 PUFA-rich diet) or menhaden oil–safflower oil (MSO; n−3 PUFA-rich diet))/kg diet with 0 or 10 g CLA/kg for 8 weeks. Ex vivo prostaglandin E2biosynthesis by bone organ culture was significantly higher (P<0·001) in rats consuming SBO compared with MSO, irrespective of CLA. Addition of the CLA treatment to either diet further lowered (P<0·05) ex vivo prostaglandin E2 production. Neither PUFA type nor CLA altered circulating or femoral mRNA levels of osteocalcin (a marker of bone formation) or insulin-like growth factor-I (a mediator of bone metabolism). While urinary pyridinium crosslinks levels (markers of bone resorption) were unaffected by CLA irrespective of PUFA type, they were significantly higher (P<0·05)...
The Role of Omega-3 Polyunsaturated Fatty Acids from Different Sources in Bone Development
Nutrients
N-3 polyunsaturated fatty acids (PUFAs) are essential nutrients that must be obtained from the diet. We have previously showed that endogenous n-3 PUFAs contribute to skeletal development and bone quality in fat-1 mice. Unlike other mammals, these transgenic mice, carry the n-3 desaturase gene and thus can convert n-6 to n-3 PUFAs endogenously. Since this model does not mimic dietary exposure to n-3 PUFAs, diets rich in fish and flaxseed oils were used to further elucidate the role of n-3 PUFAs in bone development. Our investigation reveals that dietary n-3 PUFAs decrease fat accumulation in the liver, lower serum fat levels, and alter fatty acid (FA) content in liver and serum. Bone analyses show that n-3 PUFAs improve mechanical properties, which were measured using a three-point bending test, but exert complex effects on bone structure that vary according to its source. In a micro-CT analysis, we found that the flaxseed oil diet improves trabecular bone micro-architecture, wherea...