Immunogenic Properties of a Chimeric Plant Virus Expressing a Hepatitis C Virus (HCV)-Derived Epitope: New Prospects for an HCV Vaccine (original) (raw)
Related papers
Development of a plant-derived subunit vaccine candidate against hepatitis C virus
Archives of Virology, 2000
Hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis with over 180 million cases worldwide. Vaccine development for HCV has been difficult. Presently, the virus cannot be grown in tissue culture and there is no vaccine or effective therapy against this virus. In this research, we describe the development of an experimental plant-derived subunit vaccine against HCV. A tobamoviral vector was engineered to encode a consensus sequence of hypervariable region 1 (HVR1), a potential neutralizing epitope of HCV, genetically fused to the C-terminal of the B subunit of cholera toxin (CTB). This epitope was selected from among the amino acid sequences of HVR1 "mimotopes" previously derived by phage display technology. The nucleotide sequence encoding this epitope was designed utilizing optimal plant codons. This mimotope is capable of inducing cross-neutralizing antibodies against different variants of the virus. Plants infected with recombinant tobacco mosaic virus (TMV) engineered to express the HVR1/CTB chimeric protein, contained intact TMV particles and produced the HVR1 consensus peptide fused to the functionally active, pentameric B subunit of cholera toxin. Plant-derived HVR1/CTB reacted with HVR1-specific monoclonal antibodies and immune sera from individuals infected with virus from four of the major genotypes of HCV. Intranasal immunization of mice with a crude plant extract containing the recombinant HVR1/CTB protein elicited both anti-CTB serum antibody and anti-HVR1 serum antibody which specifically bound to HCV virus-like particles. Using plant-virus transient expression to produce this unique chimeric antigen will facilitate the development and production of an 2558 L. G. Nemchinov et al. experimental HCV vaccine. A plant-derived recombinant HCV vaccine can potentially reduce expenses normally associated with production and delivery of conventional vaccines.
Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope
Archives of Virology, 2007
Chimeric plant viruses are emerging as promising vectors for use in innovative vaccination strategies. In this context, cucumber mosaic virus (CMV) has proven to be a suitable carrier of the hepatitis C virus (HCV)-derived R9 mimotope. In the present work, a new chimeric CMV, expressing on its surface the HCV-derived R10 mimotope, was produced but lost the insert after the first passage on tobacco. A comparative analysis between R10-and R9-CMV properties indicated that R9-CMV stability was related to structural features typical of the foreign insert. Thus, in order to combine high virus viability with strong immuno-stimulating activity, we doubled R9 copies on each of the 180 coat protein (CP) subunits of CMV. One of the chimeras produced by this approach (2R9-CMV) was shown to systemically infect the host, stably maintaining both inserts. Notably, it was strongly recognized by sera of HCV-infected patients and, as compared with R9-CMV, displayed an enhanced ability to stimulate lymphocyte IFN-g production. The high immunogen levels achievable in plants or fruits infected with 2R9-CMV suggest that this chimeric form of CMV may be useful in the development of oral vaccines against HCV.
Cucumber mosaic virus as carrier of a hepatitis C virus-derived epitope
Archives of Virology, 2003
Cucumber mosaic virus (CMV) is a three component isodiametric plant virus which is common worldwide and has an extremely wide host range. A pseudorecombinant was made, derived from the RNA3 component of the CMV-S strain, carrying the coat protein (CP) gene, and the RNA1,2 components of the CMV-D strain. This system developed mild mosaic and vein clearing in Xanthi tobacco three weeks after inoculation. The CP gene was then engineered in three different positions, to encode a Hepatitis C virus (HCV) epitope. The selected peptide was the so-called R9 mimotope, a synthetic surrogate derived from a consensus profile of many hypervariable region 1 (HVR1) sequences of the putative HCV envelope protein E2. Serum samples from 60 patients with chronic hepatitis C displayed a significant immunoreactivity to crude plant extracts infected with the chimeric CMV. These results suggest that further investigation should be made into a possible vaccine function for the CMV-HCV mimotope system.
Perspectives: towards a peptide-based vaccine against hepatitis C virus
Molecular Immunology, 2001
Hepatitis C virus (HCV) is a widespread infectious disease in humans with the negative implication of becoming chronic in most persons. Patients infected with HCV are at risk of liver cirrhosis or hepatocellular carcinoma at later stages. In contrast to hepatitis A and hepatitis B, there is no immunization yet available, neither prophylactic nor therapeutic. Thus, there is an urgent need to develop a safe, protective vaccine against this fatal disease. Developing countries are even more at risk for HCV. There are currently a number of scientific approaches aimed towards solving this problem. Taking both risks and costs of immunization into consideration, a peptide-based vaccine may be a reasonable prophylactic protection. Also, it might be of therapeutic use in already infected patients by increasing a specific CTL response against HCV. In our lab, we are focusing on immunopotentiating reconstituted influenza virosomes (IRIVs) as carriers for immunogenic HLA-A2restricted core epitopes to induce peptide-specific cytotoxic T lymphocytes (CTLs). The IRIVs are similar to liposomes, but in addition contain influenza-derived hemagglutinin and neuraminidase on their outer surface which makes them fusogenic, thus, permitting antigen delivery to host cells. So far, virosomes have been successfully used for vaccine development and as a result a virosomal vaccine against both influenza virus (Inflexal ® BERNA) and hepatitis A virus (HAV) (Epaxal ® BERNA) already exist on the market. This paper focuses on the importance of development of a successful vaccine against HCV and, more specifically, we discuss the use, advantages and disadvantages of a peptide-based vaccine. A brief report of our latest findings will be included.
Virology, 2007
Plant-virus-based vaccines have emerged as a promising avenue in vaccine development. This report describes the engineering of an innovative vaccine platform using the papaya mosaic virus (PapMV) capsid protein (CP) as a carrier protein and a C-terminal fused hepatitis C virus (HCV) E2 epitope as the immunogenic target. Two antigen organizations of the PapMV-based vaccines were tested: a virus-like-particle (VLP; PapMVCP-E2) and a monomeric form (PapMVCP 27-215 -E2). While the two forms of the vaccine were both shown to be actively internalized in vitro in bone-marrow-derived antigen presenting cells (APCs), immunogenicity was demonstrated to be strongly dependent on antigen organization. Indeed, C3H/HeJ mice injected twice with the multimeric VLP vaccine showed a long-lasting humoral response (more than 120 days) against both the CP and the fused HCV E2 epitope. The antibody profile (production of IgG1, IgG2a, IgG2b, IgG3) suggests a Th1/Th2 response. Immunogenicity of the PapMV vaccine platform was not observed when the monomer PapMVCP-E2 was injected. These results demonstrate for the first time the potential of the PapMV vaccine platform and the critical function of multimerization in its immunogenicity.
Biotechnology and Applied Biochemistry, 2014
Hepatitis C virus (HCV) infection is a worldwide health problem. Vaccines against this pathogen are not available and advances in this field are limited because of the high genetic variability of the virus, inaccessibility of animal models, and incomplete definition of immunological correlates of protection. In the present work, a chimeric protein, Eq1, encompassing HCV amino acid regions from structural antigens, was generated. Eq1 was expressed in GC-366 bacterial cells. After cell disruption, Eq1 was purified from the insoluble fraction by sequential steps of differential solubilization and metal chelating affinity chromatography. Eq1 was specifically recognized by anti-HCV positive human sera. Moreover, immunization of BALB/c mice with different doses of Eq1 formulated either in Alum or Freund's incomplete adjuvant elicited both humoral-and cellular-specific immune responses. Doses of 20 µg of Eq1 induced the strongest cell-mediated immune responses and only the formulation of this dose in Alum elicited a neutralizing antibody response against heterologous cell culture HCV. All these data together indicate that Eq1 is immunogenic in mice and might be an interesting component of vaccine candidates against HCV infection.
Plant biotechnology journal, 2017
The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g., cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500,000 die yearly from HCV-related liver pathologies. To date, there is no licenced vaccine available to prevent HCV infection and production of an HCV vaccine remains a major challenge. Here we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium-mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2∆N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prim...
Archives of Virology
The eradication of hepatitis C virus (HCV) infection is a public health priority. Despite the efficiency of treatment with direct-acting antivirals, the high cost of the therapy and the lack of accurate data about the HCV-infected population worldwide constitute important factors hampering this task. Hence, an affordable preventive vaccine is still necessary for reducing transmission and the future disease burden globally. In this work, chimeric proteins (EnvCNS3 and NS3EnvCo) encompassing conserved and immunogenic epitopes from the HCV core, E1, E2 and NS3 proteins were produced in Escherichia coli, and their immunogenicity was evaluated in BALB/c mice. The impact of recombinant HCV E2.680 protein and oligodeoxynucleotide 39M (ODN39M) on the immune response to chimeric proteins was also assessed. Immunization with chimeric proteins mixed with E2.680 enhanced the antibody and cellular response against HCV antigens and chimeric proteins. Interestingly, the combination of NS3EnvCo with E2.680 and ODN39M as adjuvant elicited a potent antibody response characterized by an increase in antibodies of the IgG2a subclass against E2.680, NS3 and chimeric proteins, suggesting the induction of a Th1-type response. Moreover, a cytotoxic T lymphocyte response and a broad response of IFN-γ-secreting cells against HCV antigens were induced with this formulation as well. This T cell response was able to protect vaccinated mice against challenge with a surrogate model based on HCV recombinant vaccinia virus. Overall, the vaccine candidate NS3EnvCo/E2.680/ODN39M might constitute an effective immunogen against HCV with potential for reducing the likelihood of viral persistence.