Topological Indices of Families of Bistar and Corona Product of Graphs (original) (raw)

Three New/Old Vertex–Degree–Based Topological Indices

Three vertex-degree-based graph invariants are presented, that earlier have been considered in the chemical and/or mathematical literature, but that evaded the attention of most mathematical chemists. These are the reciprocal Randić index (RR), the reduced second Zagreb index RM 2 , and the reduced reciprocal Randić index (RRR). If d 1 , d 2 , . . . , d n are the degrees of the vertices of the graph G = (V, E), then

Mapping Connectivity Patterns: Degree-Based Topological Indices of Corona Product Graphs

Journal of Applied Mathematics

Graph theory (GT) is a mathematical field that involves the study of graphs or diagrams that contain points and lines to represent the representation of mathematical truth in a diagrammatic format. From simple graphs, complex network architectures can be built using graph operations. Topological indices (TI) are graph invariants that correlate the physicochemical and interesting properties of different graphs. TI deal with many properties of molecular structure as well. It is important to compute the TI of complex structures. The corona product (CP) of two graphs G and H gives us a new graph obtained by taking one copy of G and V G copies of H and joining the i th vertex of G to every vertex in the i th copy of H . In this paper, based on various CP graphs composed of paths, cycles, and complete graphs, the geometric index (GA) and atom bond connectivity (ABC) index are investigated. Particularly, we discussed the corona products P s ⨀ P t , C t ⨀ C s , K t ⊙ K s , K t ⊙ P s , and...

On Degree-Based Topological Indices of Symmetric Chemical Structures

Symmetry

A Topological index also known as connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as Randi c ´ , atom-bond connectivity (ABC) and geometric-arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study HDCN1(m,n) and HDCN2(m,n) of dimension m , n and derive analytical closed results of general Randi c ´ index R α ( G ) for different values of α . We also compute the general first Zagreb, ABC, GA, A B C 4 and G A 5 indices for these Hex derived cage networks for the first time and give closed formulas of these degree-based indices.

Degree Based Topological Indices of Isomers of Organic Compounds

Let G(V,E) be a connected graph. The sets of vertices and edges of G are denoted by V=V (G) and E=E (G) respectively. In such a molecular graph, vertices represent atoms and edges represent bonds. The number of edges incident on a vi is called the degree d(vi) of vertex vi . The sum of degrees of all vertices in G is twice the number of edges in G [1]. In molecular graph we have many topological indices. In this research, we computing Randic index, Molecular topological index ,Augmented Zagreb index ,Geometric-Arithmetic index ,Atom– bond connectivity index, Harmonic index ,Sum-connectivity index of n-decane ,3,4,4-Trimethyl heptane and 2,4-dimethyl-4- ethyl hexane.

On Generalized Topological Indices for Some Special Graphs

Journal of Mathematics

Topological indices are numeric values associated with a graph and characterize its structure. There are various topological indices in graph theory such as degree-based, distance-based, and counting-related topological indices. Among these indices, degree-based indices are very interesting and studied well in literature. In this work, we studied the generalized form of harmonic, geometric-arithmetic, Kulli–Basava indices, and generalized power-sum-connectivity index for special graph that are bridge graph over path, bridge graph over cycle, bridge graph over complete graph, wheel graph, gear graph, helm graph, and square lattice graph. We found exact values for the stated indices and for the stated special graphs. We also investigated the generalized form of the indices for various properties of alkane isomers, from which we obtained interesting results which are closed to that of experimental obtained results.

On some degree based topological indices of mk-graph

Journal of Discrete Mathematical Sciences and Cryptography, 2020

A topological index is a real number which is same under graph isomorphism and it is derived from a graph by mathematically. In chemical graph theory, a molecular graph is a simple graph having no loops and multiple edges in which atoms and chemical bonds are represented by vertices and edges respectively. Topological indices defined on these chemical molecular structures can help researchers better understand the physical features, chemical reactivity, and biological activity. In this paper, we compute general expressions

Polynomial and Deficient Topological Indices of Identified Graphs

Journal of Interdisciplinary Mathematics, 2022

To study the properties such as physical and chemical of compounds, the topological indices are introduced in chemical graph theory. These indices provide qualitative structure activity relationship (QSAR). Degree based topological indices are commonly used invariant in chemical graph theory. However, in this article, a new degree of vertices is introduced, called "deficiency degree". Further, we have computed five topological indices based on the deficiency degree like "deficient first Zagreb index, deficient generalized Randić index, deficient harmonic index, deficient inverse sum index, deficient augmented Zagreb index" for identified graphs using the M-polynomial of graph.

On the ABC and GA indices of the corona products of some graphs

2021

In this research, we derived the formulae for the atom-bond connectivity (ABC) index and the geometric-arithmetic (GA) index of several corona products of graphs made by composing the path, the cycle and the complete graphs. Relevant mathematical results were presented with proofs, indicating the possibility of predicting physicochemical properties of several molecular graphs.

Degree based Topological indices of Hanoi Graph

ArXiv, 2018

There are various topological indices for example distance based topological indices and degree based topological indices etc. In QSAR/QSPR study, physiochemical properties and topological indices for example atom bond connectivity index, fourth atom bond connectivity index, Randic connectivity index, sum connectivity index, and so forth are used to characterize the chemical compound. In this paper we computed the edge version of atom bond connectivity index, fourth atom bond connectivity index, Randic connectivity index, sum connectivity index, geometric-arithmetic index and fifth geometric-arithmetic index of Double-wheel graph and Hanoi graph. The results are analyzed and the general formulas are derived for the above mentioned families of graphs.