The antileishmanial activity of isoforms 6- and 8-selective histone deacetylase inhibitors (original) (raw)

Antimalarial and antileishmanial activities of histone deacetylase inhibitors with triazole-linked cap group

Bioorganic & Medicinal Chemistry, 2010

Histone deacetylase inhibitors (HDACi) are endowed with plethora of biological functions including anti-proliferative, anti-inflammatory, anti-parasitic, and cognition-enhancing activities. Parsing the structure-activity relationship (SAR) for each disease condition is vital for long-term therapeutic applications of HDACi. We report in the present study specific cap group substitution patterns and spacer-group chain lengths that enhance the antimalarial and antileishmanial activity of aryltriazolylhydroxamates-based HDACi. We identified many compounds that are several folds selectively cytotoxic to the plasmodium parasites compared to standard HDACi. Also, a few of these compounds have antileishmanial activity that rivals that of miltefosine, the only currently available oral agent against visceral leishmaniasis. The anti-parasite properties of several of these compounds tracked well with their anti-HDAC activities. The results presented here provide further evidence on the suitability of HDAC inhibition as a viable therapeutic option to curb infections caused by apicomplexan protozoans and trypanosomatids.

Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase

Acta Tropica, 2005

Silent information regulator 2 (SIR2) proteins are NAD-dependant deacetylases found in organisms ranging from bacteria to human. In eukaryotes, these proteins are involved in many biological processes including transcriptional repression, metabolism, ageing, or apoptosis. Here, we have shown that Sirtinol, a commercially available inhibitor of SIR2 deacetylases, significantly inhibits the in vitro proliferation of Leishmania infantum axenic amastigotes in a dose-dependent manner. This activity is stage specific since sirtinol did not affect the in vitro growth of parasite promastigotes. Growth arrest in amastigotes is associated with genomic DNA fragmentation, a process reminiscent of apoptosis. Interestingly parasites carrying extra copies of the LmSIR2 gene were less susceptible to the sirtinol mediated cell death. Altogether, these results constitute novel evidences that Leishmania SIR2 proteins play a role in the control of the parasite apoptotic phenomenon.

Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues

Antimicrobial Agents and Chemotherapy, 2008

The malaria parasite Plasmodium falciparum has at least five putative histone deacetylase (HDAC) enzymes, which have been proposed as new antimalarial drug targets and may play roles in regulating gene transcription, like the better-known and more intensively studied human HDACs (hHDACs). Fourteen new compounds derived from L-cysteine or 2-aminosuberic acid were designed to inhibit P. falciparum HDAC-1 (PfHDAC-1) based on homology modeling with human class I and class II HDAC enzymes. The compounds displayed highly potent antiproliferative activity against drug-resistant (Dd2) or drug sensitive (3D7) strains of P. falciparum in vitro (50% inhibitory concentration of 13 to 334 nM). Unlike known hHDAC inhibitors, some of these new compounds were significantly more toxic to P. falciparum parasites than to mammalian cells. The compounds inhibited P. falciparum growth in erythrocytes at both the early and late stages of the parasite's life cycle and caused altered histone acetylation patterns (hyperacetylation), which is a marker of HDAC inhibition in mammalian cells. These results support PfHDAC enzymes as being promising targets for new antimalarial drugs.

Differential Microbicidal Effects of Human Histone Proteins H2A and H2B on Leishmania Promastigotes and Amastigotes

Infection and Immunity, 2011

ABSTRACTRecent studies have shown that histone proteins can act as antimicrobial peptides in host defense against extracellular bacteria, fungi, andLeishmaniapromastigotes. In this study, we used human recombinant histone proteins to further study their leishmaniacidal effects and the underlying mechanisms. We found that the histones H2A and H2B (but not H10) could directly and efficiently kill promastigotes ofLeishmania amazonensis,L. major,L. braziliensis, andL. mexicanain a treatment dose-dependent manner. Scanning electron microscopy revealed surface disruption of histone-treated promastigotes. More importantly, the preexposure of promastigotes to histone proteins markedly decreased the infectivity of promastigotes to murine macrophages (Mφs)in vitro. However, axenic and lesion-derived amastigotes ofL. amazonensisandL. mexicanawere relatively resistant to histone treatment, which correlated with the low levels of intracellular H2A in treated amastigotes. To understand the mechan...

Differential Microbicidal Effects of Human Histone Proteins H2A and H2B on Leishmania Promastigotes and Amastigotes

Infection and Immunity, 2011

Recent studies have shown that histone proteins can act as antimicrobial peptides in host defense against extracellular bacteria, fungi, and Leishmania promastigotes. In this study, we used human recombinant histone proteins to further study their leishmaniacidal effects and the underlying mechanisms. We found that the histones H2A and H2B (but not H1 0) could directly and efficiently kill promastigotes of Leishmania amazonensis, L. major, L. braziliensis, and L. mexicana in a treatment dose-dependent manner. Scanning electron microscopy revealed surface disruption of histone-treated promastigotes. More importantly, the preexposure of promastigotes to histone proteins markedly decreased the infectivity of promastigotes to murine macrophages (Ms) in vitro. However, axenic and lesion-derived amastigotes of L. amazonensis and L. mexicana were relatively resistant to histone treatment, which correlated with the low levels of intracellular H2A in treated amastigotes. To understand the mechanisms underlying these differential responses, we investigated the role of promastigote surface molecules in histone-mediated killing. Compared with the corresponding controls, transgenic L. amazonensis promastigotes expressing lower levels of surface gp63 proteins were more susceptible to histone H2A, while L. major and L. mexicana promastigotes with targeted deletion of the lipophosphoglycan 2 (lpg2) gene (but not the lpg1 gene) were more resistant to histone H2A. We discuss the influence of promastigote major surface molecules in the leishmaniacidal effect of histone proteins. This study provides new information on host innate immunity to different developmental stages of Leishmania parasites.

Inhibitors of human histone deacetylase with potent activity against the African trypanosome Trypanosoma brucei

Bioorganic & Medicinal Chemistry Letters, 2012

A number of hydroxamic acid derivatives which inhibit human histone deacetylases were investigated for efficacy against cultured bloodstream form Trypanosoma brucei. Three out of the four classes tested displayed significant activity. The majority of compounds blocked parasite growth in the submicromolar range. The most potent was a member of the sulphonepiperazine series with an IC 50 of 34 nM. These results identify lead compounds with potential for the development of a novel class of trypanocidal agent.

Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases

Journal of biomedicine & biotechnology, 2006

The elucidation of the mechanisms of transcriptional activation and repression in eukaryotic cells has shed light on the important role of acetylation-deacetylation of histones mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Another group belonging to the large family of sirtuins (silent information regulators (SIRs)) has an (nicotinamide adenine dinucleotide) NAD(+)-dependent HDAC activity. Several inhibitors of HDACs (HDIs) have been shown to exert antitumor effects. Interestingly, some of the HDIs exerted a broad spectrum of antiprotozoal activity. The purpose of this review is to analyze some of the current data related to the deacetylase enzymes as a possible target for drug development in cancer and parasitic diseases with special reference to protozoan infections. Given the structural differences among members of this family of enzymes, development of specific inhibitors will not only allow selective therapeutic intervention, but ...