Tuning the Mycobacterium tuberculosis alternative sigma factor SigF through the multidomain regulator Rv1364c and osmosensory kinase, protein kinase D (original) (raw)

Roles of SigB and SigF in the Mycobacterium tuberculosis Sigma Factor Network

Journal of Bacteriology, 2008

To characterize the roles of SigB and SigF in sigma factor regulation in Mycobacterium tuberculosis, we used chemically inducible recombinant strains to conditionally overexpress sigB and sigF. Using whole genomic microarray analysis and quantitative reverse transcription-PCR, we investigated the resulting global transcriptional changes after sigB induction, and we specifically tested the relative expression of other sigma factor genes after knock-in expression of sigB and sigF. Overexpression of sigB resulted in significant upregulation of genes encoding several early culture filtrate antigens (ESAT-6-like proteins), ribosomal proteins, PE-PGRS proteins, the keto-acyl synthase, KasA, and the regulatory proteins WhiB2 and IdeR. Of note, the induction of sigB did not alter the expression of other sigma factor genes, indicating that SigB is likely to serve as an end regulator for at least one branch of the M. tuberculosis sigma factor regulatory cascade. Analysis of the 5-untranslated region (UTR) of SigB-dependent transcripts revealed a putative consensus sequence of NGTGG-N 14-18 -NNGNNG. This sequence appeared upstream of both sigB (Rv2710) and the gene following it, ideR (Rv2711), and in vitro transcription analysis with recombinant SigB-reconstituted RNA polymerase confirmed SigB-dependent transcription from each of these promoters. Knock-in expression of sigF revealed that only the sigC gene was significantly upregulated 6 and 12 h after sigF induction. The previously identified SigF promoter consensus sequence AGTTTG-N 15 -GGGTTT was identified in the 5 UTR of the sigC gene, and SigF-dependent in vitro transcription of the promoter upstream of sigC was confirmed by using recombinant SigF-reconstituted RNA polymerase. These two knock-in recombinant strains were tested in a macrophage model of infection which showed that overexpression of sigB and sigF resulted in reduced rates of M. tuberculosis intracellular growth. These results define the SigB promoter consensus recognition sequence and members of the SigB regulon. Moreover, the data suggest that, in addition to serving as an end regulator in a sigma factor cascade, SigB may auto-amplify its own expression under certain conditions.

Loss of kinase activity in Mycobacterium tuberculosis multidomain protein Rv1364c

FEBS …, 2008

The alternative sigma factors are regulated by a phosphorylation-mediated signal transduction cascade involving anti-sigma factors and anti-anti-sigma factors. The proteins regulating Mycobacterium tuberculosis sigma factor F (SigF), anti-SigF and anti-anti-SigF have been identified, but the factors catalyzing phosphorylation–dephosphorylation have not been well established. We identified a distinct pathogenic species-specific multidomain protein, Rv1364c, in which the components of the entire signal transduction cascade for SigF regulation appear to be encoded in a single polypeptide. Sequence analysis of M. tuberculosis Rv1364c resulted in the prediction of various domains, namely a phosphatase (RsbU) domain, an anti-SigF (RsbW) domain, and an anti-anti-SigF (RsbV) domain. We report that the RsbU domain of Rv1364c bears all the conserved features of the PP2C-type serine/threonine phosphatase family, whereas its RsbW domain has certain substitutions and deletions in regions important for ATP binding. Another anti-SigF protein in M. tuberculosis, UsfX (Rv3287c), shows even more unfavorable substitutions in the kinase domain. Biochemical assay with the purified RsbW domain of Rv1364c and UsfX showed the loss of ability of autophosphorylation and phosphotransfer to cognate anti-anti-SigF proteins or artificial substrates. Both the Rv1364c RsbW domain and UsfX protein display very weak binding with fluorescent ATP analogs, despite showing functional interactions characteristic of anti-SigF proteins. In view of conservation of specific interactions with cognate sigma and anti-anti-sigma factor, the loss of kinase activity of Rv1364c and UsfX appears to form a missing link in the phosphorylation-dependent interaction involved in SigF regulation in Mycobacterium.

The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo

Molecular Microbiology, 2004

The ability of Mycobacterium tuberculosis to grow in macrophages is central to its pathogenicity. We found previously that the widespread 210 strain of M. tuberculosis grew more rapidly than other strains in human macrophages. Because principal sigma factors influence virulence in some bacteria, we analysed mRNA expression of the principal sigma factor, sigA , in M. tuberculosis isolates during growth in human macrophages. Isolates of the 210 strain had higher sigA mRNA levels and higher intracellular growth rates, compared with other clinical strains and the laboratory strain H37Rv. SigA was also upregulated in the 210 isolate TB294 during growth in macrophages, compared with growth in broth. In contrast, H37Rv sigA mRNA levels did not change under these conditions. Overexpression of sigA enhanced growth of recombinant M. tuberculosis in macrophages and in lungs of mice after aerosol infection, whereas recombinant strains expressing antisense transcripts to sigA showed decreased growth in both models. In the presence of superoxide, sense sigA transformants showed greater resistance than vector controls, and the antisense sigA transformant did not grow. We conclude that M. tuberculosis sigA modulates the expression of genes that contribute to virulence, enhancing growth in human macrophages and during the early phases of pulmonary infection in vivo . This effect may be medi-ated in part by increased resistance to reactive oxygen intermediates.

The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo: SigA enhances growth of M. tuberculosis in vivo

Molecular Microbiology, 2004

The ability of Mycobacterium tuberculosis to grow in macrophages is central to its pathogenicity. We found previously that the widespread 210 strain of M. tuberculosis grew more rapidly than other strains in human macrophages. Because principal sigma factors influence virulence in some bacteria, we analysed mRNA expression of the principal sigma factor, sigA, in M. tuberculosis isolates during growth in human macrophages. Isolates of the 210 strain had higher sigA mRNA levels and higher intracellular growth rates, compared with other clinical strains and the laboratory strain H37Rv. SigA was also upregulated in the 210 isolate TB294 during growth in macrophages, compared with growth in broth. In contrast, H37Rv sigA mRNA levels did not change under these conditions. Overexpression of sigA enhanced growth of recombinant M. tuberculosis in macrophages and in lungs of mice after aerosol infection, whereas recombinant strains expressing antisense transcripts to sigA showed decreased growth in both models. In the presence of superoxide, sense sigA transformants showed greater resistance than vector controls, and the antisense sigA transformant did not grow. We conclude that M. tuberculosis sigA modulates the expression of genes that contribute to virulence, enhancing growth in human macrophages and during the early phases of pulmonary infection in vivo. This effect may be mediated in part by increased resistance to reactive oxygen intermediates.

The sigma factors of Mycobacterium tuberculosis : regulation of the regulators

Febs Journal, 2010

One of the important determinants of virulence of Mycobacterium tuberculosis is adaptation to adverse conditions encountered in the host cells. The ability of Mycobacterium to successfully adapt to stress conditions is brought about by the expression of specific regulons effected by a repertoire of σ factors. The induction and availability of σ factors in response to specific stimuli is governed by a complex regulatory network comprising a number of proteins, including σ factors themselves. A serine–threonine protein kinase-mediated signaling pathway adds another dimension to the mycobacterial σ factor regulatory network. This review highlights the recent advances in understanding mycobacterial σ factors, their regulation and contribution to bacterial pathogenesis.

Attenuation of Late-Stage Disease in Mice Infected by the Mycobacterium tuberculosis Mutant Lacking the SigF Alternate Sigma Factor and Identification of SigF-Dependent Genes by Microarray Analysis

Infection and Immunity, 2004

The Mycobacterium tuberculosis alternate sigma factor, SigF, is expressed during stationary growth phase and under stress conditions in vitro. To better understand the function of SigF we studied the phenotype of the M. tuberculosis ⌬sigF mutant in vivo during mouse infection, tested the mutant as a vaccine in rabbits, and evaluated the mutant's microarray expression profile in comparison with the wild type. In mice the growth rates of the ⌬sigF mutant and wild-type strains were nearly identical during the first 8 weeks after infection. At 8 weeks, the ⌬sigF mutant persisted in the lung, while the wild type continued growing through 20 weeks. Histopathological analysis showed that both wild-type and mutant strains had similar degrees of interstitial and granulomatous inflammation during the first 12 weeks of infection. However, from 12 to 20 weeks the mutant strain showed smaller and fewer lesions and less inflammation in the lungs and spleen. Intradermal vaccination of rabbits with the M. tuberculosis ⌬sigF strain, followed by aerosol challenge, resulted in fewer tubercles than did intradermal M. bovis BCG vaccination. Complete genomic microarray analysis revealed that 187 genes were relatively underexpressed in the absence of SigF in early stationary phase, 277 in late stationary phase, and only 38 genes in exponential growth phase. Numerous regulatory genes and those involved in cell envelope synthesis were down-regulated in the absence of SigF; moreover, the ⌬sigF mutant strain lacked neutral red staining, suggesting a reduction in the expression of envelope-associated sulfolipids. Examination of 5-untranslated sequences among the downregulated genes revealed multiple instances of a putative SigF consensus recognition sequence: GGTTTCX 18 GGGTAT. These results indicate that in the mouse the M. tuberculosis ⌬sigF mutant strain persists in the lung but at lower bacterial burdens than wild type and is attenuated by histopathologic assessment. Microarray analysis has identified SigF-dependent genes and a putative SigF consensus recognition site.

RseA, the SigE specific anti-sigma factor of Mycobacterium tuberculosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis

Molecular Microbiology, 2009

Central to the response of Mycobacterium tuberculosis to environmental stress is the regulation of genes under the control of alternative sigma factors. Sigma E of M. tuberculosis plays an important role in the intracellular life of the bacterium and regulates several genes which are important for maintaining the integrity of the cell envelope stress. This makes it important to understand how SigE is activated under stress. Here we elucidate the mechanisms regulating interaction of SigE with its cognate anti-sigma factor RseA. Cysteines 70 and 73 are required for redox-dependent interaction of RseA with SigE. Under surface stress, PknB-dependent phosphorylation of RseA on T39 is required for its cleavage by ClpC1P2 thereby activating the SigE regulon. Rv2745c (MSMEG_2694), a transcriptional regulator, activates the clp regulon in response to vancomycin-induced stress. Taken together with the previous report that Rv2745c is activated by SigE, our study uncovers a positive feedback loop that activates the sigE regulon under envelope stress.

Characterization of the Mycobacterium tuberculosis Sigma Factor SigM by Assessment of Virulence and Identification of SigM-Dependent Genes

Infection and Immunity, 2007

To characterize the role of SigM in Mycobacterium tuberculosis, a sigM deletion mutant was generated by allelic exchange in the virulent CDC1551 strain. Comparing the wild-type and ⌬sigM strains by complete genomic microarray, we observed a low level of baseline expression of sigM in wild-type M. tuberculosis and no significant differences in the gene expression patterns between these two strains. Alternatively, a SigM-overexpressing M. tuberculosis strain was constructed and microarray profiling revealed SigM-dependent expression of a relatively small group of genes, which included four esat-6 homologues: esxE, esxF, esxT, and esxU. An assessment of SigM-dependent promoters from the microarray analysis revealed a putative consensus sequence for M. tuberculosis SigM of ؊35 GGAAC and ؊10 CGTCR. In vitro expression studies showed that M. tuberculosis sigM transcripts accumulate slightly in stationary phase and following heat shock. To understand the role of SigM in pathogenesis, the M. tuberculosis sigM deletion strain was compared with the isogenic wild-type strain and the complemented mutant strain for survival in murine macrophages and in the mouse model. The mutant was found to have similar abilities to survive in both the resting and activated J774A.1 macrophages. Mouse organ bacterial burdens indicated that the mutant proliferated and persisted at the same level as that of the wild-type and complemented strains in lung and spleen tissues. In time-to-death experiments in the mouse model, the ⌬sigM mutant exhibited lethality times comparable to those observed for the wild-type and complemented strains. These data indicate that M. tuberculosis SigM governs the expression of a small set of genes, including four esat-6 homologues, and that the loss of sigM does not confer a detectable virulence defect in the macrophages and mouse models of infection.

Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set

Molecular Microbiology, 2004

Bacterial alternative RNA polymerase sigma factors are key global adaptive response regulators with a likely role in Mycobacterium tuberculosis pathogenesis. We constructed a mutant lacking the sigma factor gene, sigC , by allelic exchange, in the virulent CDC1551 strain of M. tuberculosis and compared the resulting mutant with the isogenic wild-type strain and complemented mutant strain. In vitro , compared to the wild-type and complemented strains, the mutant was found to have similar ability to survive in both murine bone marrow-derived macrophages and activated J774 macrophages. In time-to-death experiments in the mouse model, the D D D D sigC mutant was significantly attenuated, causing no death in infected mice whereas the wild-type and complemented strains caused 100% mortality within 235 days after aerosol infection with a median time to death of 170 days. Mouse organ bacterial burdens indicated that the mutant proliferated and persisted at the same level as the wild-type and complemented strains in lung tissue and was able to persist in mice without causing death for > > > > 300 days. A complete genomic microarray study demonstrated that SigC modulates the expression of several key virulence-associated genes including hspX , senX3 and mtrA , encoding the a a a a -crystallin homologue, a twocomponent sensor kinase and a two-component response regulator respectively. Altered expression of a subset of these genes was confirmed by quantitative RT-PCR analysis. Analysis of genes modulated by SigC also revealed a putative consensus DNA recognition sequence for SigC of SSSAAT-N 16----20 -CGTSSS (S = C or G). Promoter recognition for one of these genes was confirmed by in vitro transcription analysis after purification of recombinant SigC and reconstitution of an E s s s s C RNA polymerase holoenzyme. These data indicate that the M. tuberculosis transcription factor SigC governs expression of an important M. tuberculosis regulon and is essential for lethality in mice, but is not required for bacterial survival in this species. These observations place the D D D D sigC mutant in a class of M. tuberculosis mutants which persist in tissues but are attenuated in their ability to elicit lethal immunopathology.