Institute for Mathematical Physics \sum over Surfaces" Form of Loop Quantum Gravity \sum over Surfaces" Form of Loop Quantum Gravity (original) (raw)

“Sum over surfaces” form of loop quantum gravity

We derive a spacetime formulation of quantum general relativity from (hamiltonian) loop quantum gravity. In particular, we study the quantum propagator that evolves the 3-geometry in proper time. We show that the perturbation expansion of this operator is finite and computable order by order. By giving a graphical representationà la Feynman of this expansion, we find that the theory can be expressed as a sum over topologically inequivalent (branched, colored) 2d surfaces in 4d. The contribution of one surface to the sum is given by the product of one factor per branching point of the surface. Therefore branching points play the role of elementary vertices of the theory. Their value is determined by the matrix elements of the hamiltonian constraint, which are known.

Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum-gravity model is the loop representation basis

We show that the Hilbert space basis that defines the Ponzano-Regge-Turaev-Viro-Ooguri combinatorial definition of 3-d Quantum Gravity is the same as the one that defines the Loop Representation. We show how to compute lengths in Witten's 3-d gravity and how to reconstruct the 2-d geometry from a state of Witten's theory. We show that the non-degenerate geometries are contained in the Witten's Hilbert space. We sketch an extension of the combinatorial construction to the physical 4-d case, by defining a modification of Regge calculus in which areas, rather than lengths, are taken as independent variables. We provide an expression for the scalar product in the Loop representation in 4-d. We discuss the general form of a nonperturbative quantum theory of gravity, and argue that it should be given by a generalization of Atiyah's topological quantum field theories axioms.

On the geometry of loop quantum gravity on a graph

We discuss the meaning of geometrical constructions associated to loop quantum gravity states on a graph. In particular, we discuss the "twisted geometries" and derive a simple relation between these and Regge geometries.

Quantum-reduced loop gravity: Relation with the full theory

Physical Review D, 2013

The quantum-reduced loop-gravity technique has been introduced for dealing with cosmological models. We show that it can be applied rather generically: anytime the spatial metric can be gauge-fixed to a diagonal form. The technique selects states based on reduced graphs with Livine-Speziale coherent intertwiners and could simplify the analysis of the dynamics in the full theory.

The Hamiltonian constraint in 3d Riemannian loop quantum gravity

Classical and Quantum Gravity, 2011

We discretize the Hamiltonian scalar constraint of three-dimensional Riemannian gravity on a graph of the loop quantum gravity phase space. This Hamiltonian has a clear interpretation in terms of discrete geometries: it computes the extrinsic curvature from dihedral angles. The Wheeler-DeWitt equation takes the form of difference equations, which are actually recursion relations satisfied by Wigner symbols. On the boundary of a tetrahedron, the Hamiltonian generates the exact recursion relation on the 6j-symbol which comes from the Biedenharn-Elliott (pentagon) identity. This fills the gap between the canonical quantization and the symmetries of the Ponzano-Regge state-sum model for 3d gravity. * vbonzom@perimeterinstitute.calfreidel@perimeterinstitute.ca

Loop quantum gravity and quanta of space: a primer

We present a straightforward and self-contained introduction to the basics of the loop approach to quantum gravity, and a derivation of what is arguably its key result, namely the spectral analysis of the area operator. We also discuss the arguments supporting the physical prediction following this result: that physical geometrical quantities are quantized in a non-trivial, computable, fashion. These results are not new; we present them here in a simple form that avoids the many non-essential complications of the first derivations.

Nonperturbative sum over topologies in 2D Lorentzian quantum gravity

2006

The recent progress in the Causal Dynamical Triangulations (CDT) approach to quantum gravity indicates that gravitation is nonperturbatively renormalizable. We review some of the latest results in 1+1 and 3+1 dimensions with special emphasis on the 1+1 model. In particular we discuss a nonperturbative implementation of the sum over topologies in the gravitational path integral in 1+1 dimensions. The dynamics of this model shows that the presence of infinitesimal wormholes leads to a decrease in the effective cosmological constant. Similar ideas have been considered in the past by Coleman and others in the formal setting of 4D Euclidean path integrals. A remarkable property of the model is that in the continuum limit we obtain a finite space-time density of microscopic wormholes without assuming fundamental discreteness. This shows that one can in principle make sense out of a gravitational path integral including a sum over topologies, provided one imposes suitable kinematical restr...

Simplicial Euclidean and Lorentzian Quantum Gravity

General Relativity and Gravitation - Proceedings of the 16th International Conference, 2002

One can try to define the theory of quantum gravity as the sum over geometries. In two dimensions the sum over Euclidean geometries can be performed constructively by the method of dynamical triangulations. One can define a proper-time propagator. This propagator can be used to calculate generalized Hartle-Hawking amplitudes and it can be used to understand the the fractal structure of quantum geometry. In higher dimensions the philosophy of defining the quantum theory, starting from a sum over Euclidean geometries, regularized by a reparametrization invariant cut off which is taken to zero, seems not to lead to an interesting continuum theory. The reason for this is the dominance of singular Euclidean geometries. Lorentzian geometries with a global causal structure are less singular. Using the framework of dynamical triangulations it is possible to give a constructive definition of the sum over such geometries, In two dimensions the theory can be solved analytically. It differs from two-dimensional Euclidean quantum gravity, and the relation between the two theories can be understood. In three dimensions the theory avoids the pathologies of three-dimensional Euclidean quantum gravity. General properties of the four-dimensional discretized theory have been established, but a detailed study of the continuum limit in the spirit of the renormalization group and asymptotic safety is till awaiting.