The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip (original) (raw)

Human Gut-on-a-Chip technology: Will this revolutionize our understanding of IBD and future treatments?

Expert review of gastroenterology & hepatology, 2016

Biomimetic human Gut-on-a-Chip is a microengineered in vitro model of human intestine that reconstitutes the intestinal microenvironment inhabited by viable gut microbiome under the precise control of mechanical deformation and fluid flow mimicking peristaltic bowel movement. By harnessing the versatile modularity of the gut-on-a-chip, key causative factors of inflammatory bowel disease (IBD) such as epithelial cells, gut microbiome, immune components, and microenvironmental cues can be independently, and collectively, manipulated for dissecting the disease mechanism. Innovations using the gut-on-a-chip may revolutionize the future treatment of IBD by validating the efficacy and safety of new IBD treatments in "Your gut-on-a-chip" that employs multiple types of host and microbial cells isolated from individual IBD patients. Ultimately gut-on-a-chip microphysiological system aims to contribute to the Precision Medicine Initiative and customized healthcare for the rescue of ...

Microfluidic Organ-on-a-Chip Models of Human Intestine

Cellular and molecular gastroenterology and hepatology, 2018

Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.

Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip

Stem Cell Reviews and Reports, 2021

Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it's necessary to develop personalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. However, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and current microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and postanalysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution to personalized medicine in the future.

The translational roadmap of the gut models, focusing on gut-on-chip

Open Research Europe

It is difficult to model in vitro the intestine when seeking to include crosstalk with the gut microbiota, immune and neuroendocrine systems. Here we present a roadmap of the current models to facilitate the choice in preclinical and translational research with a focus on gut-on-chip. These micro physiological systems (MPS) are microfluidic devices that recapitulate in vitro the physiology of the intestine. We reviewed the gut-on-chips that had been developed in academia and industries as single chip and that have three main purpose: replicate the intestinal physiology, the intestinal pathological features, and for pharmacological tests.

Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow

Lab on a Chip, 2012

Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 mL h 21) producing low shear stress (0.02 dyne cm 22) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (.1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.

Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids OPEN

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine. The small intestine is the major site for digestion, drug and nutrient absorption, interaction with commensal microbiome, and development of mucosal immunity, as well as a primary site for many diseases, such as bacterial, viral and parasitic infections and inflammatory bowel disease. Because the lack of human-relevant responses has rendered many animal models unsuitable to study causal factors and treatment strategies for human intestinal infections and disorders 1 , three-dimensional (3D) human tissue surrogates, such as intestinal organoids (also known as enteroids) have emerged as promising alternatives. These spheroidal ex vivo tissue cultures include Lgr5 + intestinal stem cells 2 and are grown embedded within a complex extracellular matrix (ECM) gel (Matrigel) with Wnt3a, epidermal growth factor (EGF), Noggin and R-spondin 1 (collectively, WENR) to support their indefinite propagation 3,4. Organoids faithfully recapitulate the cellular diversity of the intestinal epithelium and are ideally suited for in situ visualization and continuous monitoring of epithelial development and differentiation 4–8. However, the presence of an enclosed lumen is non-physiological, as secreted material from goblet,

Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation

Integrative biology : quantitative biosciences from nano to macro, 2013

Existing in vitro models of human intestinal function commonly rely on use of established epithelial cell lines, such as Caco-2 cells, which form polarized epithelial monolayers but fail to mimic more complex intestinal functions that are required for drug development and disease research. We show here that a microfluidic 'Gut-on-a-Chip' technology that exposes cultured cells to physiological peristalsis-like motions and liquid flow can be used to induce human Caco-2 cells to spontaneously undergo robust morphogenesis of three-dimensional (3D) intestinal villi. The cells of that line these villus structures are linked by tight junctions, and covered by brush borders and mucus. They also reconstitute basal proliferative crypts that populate the villi along the crypt-villus axis, and form four different types of differentiated epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) that take characteristic positions similar to those observed in living human...

Microfluidic Gut-on-a-Chip: Fundamentals and Challenges

Biosensors

The human gut is responsible for food digestion and absorption. Recently, growing evidence has shown its vital role in the proper functioning of other organs. Advances in microfluidic technologies have made a significant impact on the biomedical field. Specifically, organ-on-a-chip technology (OoC), which has become a popular substitute for animal models, is capable of imitating complex systems in vitro and has been used to study pathology and pharmacology. Over the past decade, reviews published focused more on the applications and prospects of gut-on-a-chip (GOC) technology, but the challenges and solutions to these limitations were often overlooked. In this review, we cover the physiology of the human gut and review the engineering approaches of GOC. Fundamentals of GOC models including materials and fabrication, cell types, stimuli and gut microbiota are thoroughly reviewed. We discuss the present GOC model applications, challenges, possible solutions and prospects for the GOC m...

A Micro-engineered Human Colon Intestine-Chip Platform to Study Leaky Barrier

bioRxiv (Cold Spring Harbor Laboratory), 2020

The intestinal epithelial barrier supports the symbiotic relationship between the microbiota colonizing the intestinal epithelium and the host immune system to maintain homeostasis. Leaky barrier is increasingly recognized as part of the pathogenesis of a number of chronic conditions in addition to inflammatory and infectious diseases. As our understanding on the regulation of the barrier remains limited, effective therapeutic targeting for the compromised barrier is still an unmet need. Here we combined advancements on the organoids and Organ-on-Chip technologies to establish a microengineered Colon Intestine-Chip for studying development and regulation of the human intestinal barrier. Our data demonstrate the significance of the endothelium in co-culture with the epithelial cells within a tissue-relevant microenvironment for the establishment of a tight epithelial barrier of polarized cells. Pathway analysis of the RNA sequencing (RNA-Seq), revealed significant upregulation of mechanisms relevant to the maturation of the intestinal epithelium in organoid-derived epithelial cells in co-culture with endothelium as compared to organoids maintained in suspension. We provide evidence that the Colon Intestine-Chip platform responds to interferon gamma (IFNγ), a prototype cytokine utilized to model inflammation-induced barrier disruption, by induction of apoptosis and reorganization of the apical junctional complexes as shown with other systems. We also describe the mechanism of action of interleukin 22 (IL-22) on mature, organoid-derived intestinal epithelial cells that is consistent with barrier disruption. Overall we propose the Colon Intestine-Chip as a promising human organoid-derived platform to decipher mechanisms driving the development of leaky gut in patients and enable their translation for this unmet medical need. .

In vitro models and ex vivo systems used in inflammatory bowel disease

In vitro models

Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal condition. Ulcerative colitis and Crohn's disease are types of inflammatory bowel disease. Over many decades, the disease has been a topic of study, with experts still trying to figure out its cause and pathology. Researchers have established many in vivo animal models, in vitro cell lines, and ex vivo systems to understand its cause ultimately and adequately identify a therapy. However, in vivo animal models cannot be regarded as good models for studying IBD since they cannot completely simulate the disease. Furthermore, because species differences are a crucial subject of concern, in vitro cell lines and ex vivo systems can be employed to recreate the condition properly. In vitro models serve as the starting point for biological and medical research. Ex vivo and in vitro models for replicating gut physiology have been developed. This review aims to present a clear understanding of several in vitro and ex vivo models of IBD and provide insights into their benefits and limits and their value in understanding intestinal physiology. Keywords Inflammatory bowel disease • In vitro cell lines • Ex vivo systems • Organoids • Caco-2 cell lines • Gut-on-chip