Global trait–environment relationships of plant communities (original) (raw)

Macroecology in the age of Big Data – Where to go from here?

Journal of Biogeography

Recent years have seen an exponential increase in the amount of data available in all sciences and application domains. Macroecology is part of this "Big Data" trend, with a strong rise in the volume of data that we are using for our research. Here, we summarize the most recent developments in macroecology in the age of Big Data that were presented at the 2018 annual meeting of the Specialist Group Macroecology of the Ecological Society of Germany, Austria and Switzerland (GfÖ). Supported by computational advances, macroecology has been a rapidly developing field over recent years. Our meeting highlighted important avenues for further progress in terms of standardized data collection, data integration, method development and process integration. In particular, we focus on (a) important data gaps and new initiatives to close them, for example through space-and airborne sensors, (b) how various data sources and types can be integrated, (c) how uncertainty can be assessed in data-driven analyses and (d) how Big Data and machine learning approaches have opened new ways of investigating processes rather than simply describing patterns. We discuss how Big Data opens up new opportunities, but also poses new challenges to macroecological research. In the future, it will be essential to carefully assess data quality, the reproducibility of data compilation and analytical methods, and the communication of uncertainties. Major progress in the field will depend on the definition

Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities

Although trees are key to ecosystem functioning, many forests and tree species across the globe face strong threats. Preserving areas of high biodiversity is a core priority for conservation; however, different dimensions of biodiversity and varied conservation targets make it difficult to respond effectively to this challenge. Here, we (i) identify priority areas for global tree conservation using comprehensive coverage of tree diversity based on taxonomy, phylogeny, and functional traits; and (ii) compare these findings to existing protected areas and global biodiversity conservation frameworks. We find that ca. 51% of the top-priority areas for tree biodiversity are located in current protected areas. The remaining half top-priority areas are subject to moderate to high human pressures, indicating conservation actions are needed to mitigate these human impacts. Our findings emphasize the effectiveness of using tree conservation priority areas for future global conservation planning.

LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants

Scientific Data

The lack of comprehensive and standardized taxonomic reference information is an impediment for robust plant research, e.g. in systematics, biogeography or macroecology. Here we provide an updated and much improved reference list of 1,315,562 scientific names for all described vascular plant species globally. The Leipzig Catalogue of Vascular Plants (LCVP; version 1.0.3) contains 351,180 accepted species names (plus 6,160 natural hybrids), within 13,460 genera, 564 families and 84 orders. The LCVP a) contains more information on the taxonomic status of global plant names than any other similar resource, and b) significantly improves the reliability of our knowledge by e.g. resolving the taxonomic status of ~181,000 names compared to The Plant List, the up to date most commonly used plant name resource. We used ~4,500 publications, existing relevant databases and available studies on molecular phylogenetics to construct a robust reference backbone. For easy access and integration int...

Exploring Plant Functional Diversity and Redundancy of Mediterranean High-Mountain Habitats in the Apennines

Diversity

We analyzed plant functional diversity (FD) and redundancy (FR) in Mediterranean high-mountain communities to explore plant functional patterns and assembly rules. We focused on three above-ground plant traits: plant height (H), a good surrogate of competition for light strategies, and specific leaf area (SLA) and leaf dry matter content (LDMC), useful indicators of resource exploitation functional schemes. We used the georeferenced vegetation plots and field-measured plant functional traits of four widely spread vegetation types growing on screes, steep slopes, snowbeds and ridges, respectively. We calculated Rao’s FD and FR followed by analysis of standardized effect size, and compared FD and FR community values using ANOVA and the Tukey post hoc test. Assemblage rules varied across plant communities and traits. The High FRH registered on snowbeds and ridges is probably linked to climatic filtering processes, while the high FDH and low FDSLA and FDLDMC on steep slopes could be rel...

Patterns of Understory Community Assembly and Plant Trait-Environment Relationships in Temperate SE European Forests

Diversity

We analyzed variation in the functional composition and diversity of understory plant communities across different forest vegetation types in Slovenia. The study area comprises 10 representative forest sites covering broad gradients of environmental conditions (altitude, geology, light availability, soil type and reaction, nutrient availability, soil moisture), stand structural features and community attributes. The mean and variation of the trait values were quantified by community-weighted means and functional dispersion for four key plant functional traits: plant height, seed mass, specific leaf area and leaf dry matter content. At each study site, forest vegetation was surveyed at two different spatial scales (4 and 100 m2) in order to infer scale-dependent assembly rules. Patterns of community assembly were tested with a null model approach. We found that both trait means and diversity values responded to conspicuous gradients in environmental conditions and species composition...

Deep learning and citizen science enable automated plant trait predictions from photographs

Scientific Reports

Plant functional traits (‘traits’) are essential for assessing biodiversity and ecosystem processes, but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted through visible morphological features by coupling heterogeneous photographs from citizen science (iNaturalist) with trait observations (TRY database) through Convolutional Neural Networks (CNN). Our results show that image features suffice to predict several traits representing the main axes of plant functioning. The accuracy is enhanced when using CNN ensembles and incorporating prior knowledge on trait plasticity and climate. Our results suggest that these models generalise across growth forms, taxa and biomes around the globe. We highlight the applicability of this approach by producing global trait maps that reflect known macroecological patterns. These findings demonstrate the potential of Big Data derived from professional and citizen science in concert with CNN as powerful tools fo...

Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate

Frontiers in Plant Science

Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.

Mistletoes and their eucalypt hosts differ in the response of leaf functional traits to climatic moisture supply

2021

Trade-offs between photosynthesis and the costs of resource capture inform economic strategies of plants across environmental gradients and result in predictable variation in leaf traits. However, understudied functional groups like hemiparasites that involve dramatically different strategies for resource capture may have traits that deviate from expectations. We measured leaf traits related to gas exchange in mistletoes and their eucalypt hosts along a climatic gradient in relative moisture supply, measured as the ratio of precipitation to pan evaporation (P/Ep), in Victoria, Australia. We compared traits for mistletoes vs. hosts as functions of relative moisture supply and examined trait-trait correlations in both groups. Eucalypt leaf traits responded strongly to decreasing P/Ep, consistent with economic theory. Leaf area and specific leaf area (SLA) decreased along the P/Ep gradient, while C:N ratio, leaf thickness, N per area, and δ13C all increased. Mistletoes responded overal...

The leaf economic and plant size spectra of European forest understory vegetation

Ecography, 2021

Forest understories play a vital role in ecosystem functioning and the provision of ecosystem services. However, the extent to which environmental conditions drive dominant ecological strategies in forest understories at the continental scale remains understudied. Here, we used ~29 500 forest vegetation plots sampled across Europe and classified into 25 forest types to explore the relative role of macroclimate, soil pH and tree canopy cover in driving abundance-weighted patterns in the leaf economic spectrum (LES) and plant size spectrum (PSS) of forest understories (shrub and herb layers). We calculated LES using specific leaf area (SLA) and leaf dry matter content (LDMC) and PSS using plant height and seed mass of vascular plant species found in the understories. We found that forest understories had more conservative leaf economics in areas with more extreme mean annual temperatures (mainly Fennoscandia and the Mediterranean Basin), more extreme soil pH and under more open canopies. Warm and summer-dry regions around the Mediterranean Basin and areas of Atlantic Europe also had taller understories with heavier seeds than continental temperate or boreal areas. Understories of broadleaved deciduous forests, such as Fagus forests on non-acid soils, or ravine forests, more commonly hosted species with acquisitive leaf economics. In contrast, some coniferous forests, such as Pinus, Larix and Picea mire forests, or Pinus sylvestris light taiga and sclerophyllous forests, more commonly hosted species with conservative leaf economics. Our findings highlight the importance of macroclimate and soil factors in driving trait variation of understory communities at the continental scale and the mediator effect of canopy cover on these relationships. We also provide the first maps and analyses of LES and PSS of forest understories across Europe and give evidence that the understories of European forest types are differently positioned along major axes of trait variation.

Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities

Global Ecology and Biogeography, 2021

In recent years, automobiles have improved the comfort inside the vehicle due to the improvement of noise reduction technology. However, there is a problem of road noise caused by the vibration of contact between the tire and the road surface. Damping materials, known as solutions to this problem, have limited maximum expected damping and may also be mass inefficient. In this study, we propose a method to create a high damping structure by multi-material topology optimization using viscoelastic material, structural material and void. The projection method is used as the shape representation method, and an interpolation function for the loss elastic modulus is proposed. In addition, we formulate an optimization problem with constraints that can meet the weight and rigidity required for structural members. In the numerical example, a half model of an automobile frame is used. As a result, a structure with a high damping ratio that satisfies the constraints is obtained. It is shown that the damping mechanism of the optimal structure forces shear deformation, tension and compression on the viscoelastic material. It has also been shown that damping structure can be obtained with a 78% rigidity of a compliance minimization structure. It is considered to be multimodal because a slight change in the filter radius changes the shape and damping ratio.

Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics

Remote Sensing

Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well ...

Study of Forage Quality of Grasslands on the Southern Margin of the Pannonian Basin

Agronomy, 2021

Since grasslands provide many ecosystem services, there are often different opinions on their management (e.g., agronomy, ecology, botany). Multidisciplinary research on this topic is therefore needed. This article focuses on the impact of ecological conditions, functional groups, ecological strategies, floristic composition (through habitat preference of species), major floristic gradients (presented as first two NMDS axes), and the management of forage quality. We estimated the forage quality using indicator values. All of the available vegetation plots in the region on wet and mesic meadows, managed pastures, and tall-herb meadow/pasture fringes on deeper or shallower soils (i.e., grasslands) were collected, organized in a database, and elaborated according to standard procedure. We used a widely accepted grassland classification system that uses floristic composition to define grassland types. Based on an NMDS ordination diagram and according to functional groups, ecological str...

Global patterns of vascular plant alpha diversity

Nature Communications

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional ‘scaling anomalies’ (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular pla...

TRY plant trait database – enhanced coverage and open access

Global Change Biology, 2019

Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystems properties and the derived benefits and detriments to people. Plant trait data thus represent the essential basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, and biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits. For example, we have achieved almost nearly complete global coverage of 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by intraspecific variation and trait-environmental relationships; therefore, for many purposes, these traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness in many aspects. Due to the sheer amount of data in the TRY database, machine learning for trait prediction is promising-but does not add new data. We, therefore, conclude that reducing data gaps and biases in the TRY database requires a coordinated approach to data mobilization and in-situ trait measurements. This can only be achieved in collaboration with other initiatives.

Biodiversity mediates ecosystem sensitivity to climate variability

Communications Biology

A rich body of evidence from local-scale experiments and observational studies has revealed stabilizing effects of biodiversity on ecosystem functioning. However, whether these effects emerge across entire regions and continents remains largely overlooked. Here we combine data on the distribution of more than 57,500 plant species and remote-sensing observations throughout the entire Western Hemisphere to investigate the role of multiple facets of plant diversity (species richness, phylogenetic diversity, and functional diversity) in mediating the sensitivity of ecosystems to climate variability at the regional-scale over the past 20 years. We show that, across multiple biomes, regions of greater plant diversity exhibit lower sensitivity (more stable over time) to temperature variability at the interannual and seasonal-scales. While these areas can display lower sensitivity to interannual variability in precipitation, they emerge as highly sensitive to precipitation seasonality. Cons...

Plant growth forms dictate adaptations to the local climate

Frontiers in Plant Science

Adaptive radiation is a significant driver of biodiversity. Primarily studied in animal systems, mechanisms that trigger adaptive radiations remain poorly understood in plants. A frequently claimed indicator of adaptive radiation in plants is growth form diversity when tied to the occupation of different habitats. However, it remains obscure whether morphological adaptations manifest as growth form diversity per se or as its constituent traits. We use the classic Aeonium radiation from the Canary Islands to ask whether adaptation across climatic space is structured by growth form evolution. Using morphological sampling with site-associated climate in a phylogenetic context, we find that growth forms dictate adaptations to the local environment. Furthermore, we demonstrate that the response of specific traits to analogous environments is antagonistic when growth forms are different. This finding suggests for the first time that growth forms represent particular ecological functions, ...

Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time

Nature Communications, 2021

There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populations of 62 plants, mostly herbaceous species from temperate biomes, to link plant population growth rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demographic responses to precipitation than temperature, especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than long-lived species. We find that precipitation anomalies have a nearly three-fold larger effect on λ than temperature. Species with shorter generation time have much stronger absolute responses to climate anomalies. We conclude that key species-level traits can predict plant population responses to climate, and dis...

Climate Sensitivity of the Arid Scrublands on the Tibetan Plateau Mediated by Plant Nutrient Traits and Soil Nutrient Availability

Remote Sensing

Climate models predict the further intensification of global warming in the future. Drylands, as one of the most fragile ecosystems, are vulnerable to changes in temperature, precipitation, and drought extremes. However, it is still unclear how plant traits interact with soil properties to regulate drylands’ responses to seasonal and interannual climate change. The vegetation sensitivity index (VSI) of desert scrubs in the Qaidam Basin (NE Tibetan Plateau) was assessed by summarizing the relative contributions of temperature (SGST), precipitation (SGSP), and drought (temperature vegetation dryness index, STVDI) to the dynamics of the normalized difference vegetation index (NDVI) during plant growing months yearly from 2000 to 2015. Nutrient contents, including carbon, nitrogen, phosphorus, and potassium in topsoils and leaves of plants, were measured for seven types of desert scrub communities at 22 sites in the summer of 2016. Multiple linear and structural equation models were use...

Ecological Indicator Values for Europe (EIVE) 1.0

Vegetation Classification and Survey

Aims: To develop a consistent ecological indicator value system for Europe for five of the main plant niche dimensions: soil moisture (M), soil nitrogen (N), soil reaction (R), light (L) and temperature (T). Study area: Europe (and closely adjacent regions). Methods: We identified 31 indicator value systems for vascular plants in Europe that contained assessments on at least one of the five aforementioned niche dimensions. We rescaled the indicator values of each dimension to a continuous scale, in which 0 represents the minimum and 10 the maximum value present in Europe. Taxon names were harmonised to the Euro+Med Plantbase. For each of the five dimensions, we calculated European values for niche position and niche width by combining the values from the individual EIV systems. Using T values as an example, we externally validated our European indicator values against the median of bioclimatic conditions for global occurrence data of the taxa. Results: In total, we derived European ...

Resolving whole‐plant economics from leaf, stem and root traits of 1467 Amazonian tree species

Oikos, 2021

It remains unclear how evolutionary and ecological processes have shaped the wide variety of plant life strategies, especially in highly diverse ecosystems like tropical forests. Some evidence suggests that species have diversified across a gradient of ecological strategies, with different plant tissues converging to optimize resource use across environmental gradients. Alternative hypotheses propose that species have diversified following independent selection on different tissues, resulting in a decoupling of trait syndromes across organs. To shed light on the subject, we assembled an unprecedented dataset combining 19 leaf, stem and root traits for 1467 tropical tree species inventoried across 71 0.1-ha plots spanning broad environmental gradients in French Guiana. Nearly 50% of the overall functional heterogeneity was expressed along four orthogonal dimensions, after accounting for phylogenetic dependences among species. The first dimension related to fine root functioning, while the second and third dimensions depicted two decoupled leaf economics spectra, and the fourth dimension encompassed a wood economics spectrum. Traits involved in orthogonal functional strategies, five leaf traits in particular but also trunk bark thickness, were consistently associated with a same gradient of soil texture and nutrient availability. Root traits did not show any significant association with edaphic variation, possibly because of the prevailing influence of other factors (mycorrhizal symbiosis, phylogenetic constraints). Our study emphasises the existence of multiple functional dimensions that allow tropical tree species to optimize their performance in a given environment, bringing new insights into the debate around the presence of a whole plant economic spectrum in tropical forest tree communities. It also emphasizes the key role that soil heterogeneity plays in shaping tree species assembly. The extent to which different organs are decoupled and respond to environmental gradients may also help to improve our predictions of species distribution changes in responses to habitat modification and environmental changes.

Leaf Habit and Stem Hydraulic Traits Determine Functional Segregation of Multiple Oak Species along a Water Availability Gradient

Forests, 2020

Oaks are a dominant woody plant genus in the northern hemisphere that occupy a wide range of habitats and are ecologically diverse. We implemented a functional trait approach that included nine functional traits related to leaves and stems in order to explain the species coexistence of 21 oak species along a water availability gradient in a temperate forest in Mexico. This particular forest is characterized as a biodiversity hotspot, with many oak species including some endemics. Our main aim was to investigate whether the different oak species had specific trait associations that allow them to coexist along an environmental gradient at regional scale. First, we explored trait covariation and determined the main functional dimensions in which oaks were segregated. Second, we explored how environmental variation has selected for restricted functional dimensions that shape oak distributions along the gradient, regardless of their leaf life span or phylogeny (section level). Third, we ...

Respuestas de los atributos fotosintéticos y estequiométricos a la aridez en las especies y tipos funcionales de dos comunidades del desierto sonorense

Botanical Sciences

Antecedentes: Las plantas de zonas secas han desarrollado adaptaciones para el uso eficiente del agua (UEA), aunque la limitación de nutrientes y exceso de irradiancia también afectan su desempeño. Altas tasas de fotosíntesis y contenido de nitrógeno foliar reportado previamente parecen contradecir la alta UEA en sus especies y comunidades. Preguntas: ¿Cómo son los atributos foliares ecofisiológicos y estequiométricos en especies desérticas? ¿Favorecen las especies desérticas la mayor eficiencia en el uso del agua y/o nutrientes? Especies de estudio: Calliandra eriophylla , Cercidium microphyllum , Encelia farinosa , Eysenhardtia orthocarpa , Fouquieria diguetii , Fouquieria macdougalii , Ipomoea arborescens , Jatropha cardiophylla , Jatropha cordata , Larrea tridentata , Mimosa laxiflora , Olneya tesota y Prosopis velutina . Sitio y años de estudio: Desierto Sonorense, Región central de Sonora, México. Agosto- septiembre de 2019. Métodos: Se midieron y analizaron atributos ecofisio...

Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications

Remote Sensing

Hyperspectral imagery plays a vital role in precision agriculture, forestry, environment, and geological applications. Over the past decade, extensive research has been carried out in the field of hyperspectral remote sensing. First introduced by the Italian Space Agency ASI in 2019, space-borne PRISMA hyperspectral imagery (PHSI) is taking the hyperspectral remote sensing research community into the next era due to its unprecedented spectral resolution of ≤12 nm. Given these abundant free data and high spatial resolution, it is crucial to provide remote sensing researchers with information about the critical attributes of PRISMA imagery, making it the most viable solution for various land and water applications. Hence, in the present study, a SWOT analysis was performed for PHSI using recent case studies to exploit the potential of PHSI for different remote sensing applications, such as snow, soil, water, natural gas, and vegetation. From this analysis, it was found that the higher...

A quixotic view of spatial bias in modelling the distribution of species and their diversity

npj Biodiversity

Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to...

Can Trait-Based Schemes Be Used to Select Species in Urban Forestry?

Frontiers in Sustainable Cities, 2021

Urban forests in northern Europe are threatened by climate change and biosecurity risks, and in response, city planners are urged to select a wider portfolio of tree species to mitigate the risks of species die-off. However, selecting the right species is a challenge, as most guidance available to specifiers focuses on ecosystem service delivery rather than the information most critical to tree establishment: the ability of a species to tolerate the stresses found in a given place. In this paper, we investigate the potential of using ecological techniques to describe ecological traits at the level of species selection, and the potential of functional ecology theories to identify species that are not widely discussed or specified at present but might be suitable. We collected trait data on 167 tree species across 37 genera, including 38 species within a case study genus, Magnolia L., and tested four theories that posit ways in which traits trade off against each other in predictable ...

Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot

New Phytologist, 2021

Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61-72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.

Environmental controls override grazing effects on plant functional traits in Tibetan rangelands

Functional Ecology, 2019

Plant functional traits are key to predict community responses to abiotic and biotic disturbances. Grazing is the dominant land‐use form in drylands and alpine environments, especially in Central Asian rangelands. Here, we address grazing effects and their relative importance against environmental controls on plant traits. We sampled 14 plant functional traits, which are potentially sensitive to grazing, from 127 taxa distributed across three grassland types in Tibetan grasslands exposed to increasing levels of precipitation: steppe, steppe‐meadow and meadow. We performed principal components analysis and fourth‐corner analysis to explore the impacts of grazing and environment on multiple community‐weighted mean (CWM) traits. We also used generaliszed linear mixed models to test the effects of grazing and environment on each CWM trait, and on three dimensions of functional trait diversity, i.e. functional richness (FRic), evenness (FEve) and divergence (FDiv). In addition, we undert...

Trait–performance relationships of grassland plant species differ between common garden and field conditions

Ecology and Evolution, 2019

The way functional traits affect growth of plant species may be highly context‐specific. We asked which combinations of trait values are advantageous under field conditions in managed grasslands as compared to conditions without competition and land‐use. In a two‐year field experiment, we recorded the performance of 93 species transplanted into German grassland communities differing in land‐use intensity and into a common garden, where species grew unaffected by land‐use under favorable conditions regarding soil, water, and space. The plants’ performance was characterized by two independent dimensions (relative growth rates (RGR) of height and leaf length vs. aboveground biomass and survival) that were differently related to the eight focal key traits in our study (leaf dry matter content (LDMC), specific leaf area (SLA), height, leaf anatomy, leaf persistence, leaf distribution, vegetative reproduction, and physical defense). We applied multivariate procrustes analyses to test for ...

Deriving site‐specific species pools from large databases

Ecography, 2020

Defining the species pool of a community is crucial for many types of ecological analyses, providing a foundation to metacommunity, null modelling or dark diversity frameworks. It is a challenge to derive the species pool empirically from large and heterogeneous databases. Here, we propose a method to define a site‐specific species pool (SSSP), i.e. the probabilistic set of species that may co‐occur with the species of a target community. Using large databases with geo‐referenced records that comprise full plant community surveys, our approach characterizes each site by its own species pool without requiring a pre‐defined habitat classification. We calculate the probabilities of each species in the database to occur in the target community using Beals’ index of sociological favourability, and then build sample‐based rarefaction curves from neighbouring records with similar species composition to estimate the asymptotic species pool size. A corresponding number of species is then sel...

Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe

Nature Communications, 2023

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined. Predicting the effects of a changing climate on the diversity and functioning of the ecosphere requires an understanding of how climate drives the distribution of plant species and ecosystem properties 1,2. Ecosystem functioning, such as productivity and nutrient cycling, is strongly determined by the functional composition of the plant community 3-6. Functional traits represent species' life-history strategies 7 , and are often summarized with a few main, largely independent, axes of variation, such as the fast-slow continuum 8 , as reflected in the leaf-economics spectrum 9 , the species' reproductive strategy 10 , the plant size spectrum 7 , and the continuum of collaboration with mycorrhizal fungi 11. A foundational, yet globally weakly supported, assumption in trait-based ecology is that the geographical distribution of dominant functional traits in plant communities is shaped by macroenvironmental gradients, independently of taxonomy 12-14. Here, we addressed this assumption by studying the consistency of macroclimate-trait relationships among European plant communities.

PalmTraits 1.0, a species-level functional trait database of palms worldwide

Scientific Data, 2019

Plant traits are critical to plant form and function —including growth, survival and reproduction— and therefore shape fundamental aspects of population and ecosystem dynamics as well as ecosystem services. Here, we present a global species-level compilation of key functional traits for palms (Arecaceae), a plant family with keystone importance in tropical and subtropical ecosystems. We derived measurements of essential functional traits for all (>2500) palm species from key sources such as monographs, books, other scientific publications, as well as herbarium collections. This includes traits related to growth form, stems, armature, leaves and fruits. Although many species are still lacking trait information, the standardized and global coverage of the data set will be important for supporting future studies in tropical ecology, rainforest evolution, paleoecology, biogeography, macroecology, macroevolution, global change biology and conservation. Potential uses are comparative e...

Plant trait networks reveal adaptation strategies in the drylands of China

BMC Plant Biology, 2023

Background Plants accomplish multiple functions by the interrelationships between functional traits. Clarifying the complex relationships between plant traits would enable us to better understand how plants employ different strategies to adapt to the environment. Although increasing attention is being paid to plant traits, few studies focused on the adaptation to aridity through the relationship among multiple traits. We established plant trait networks (PTNs) to explore the interdependence of sixteen plant traits across drylands. Results Our results revealed significant differences in PTNs among different plant life-forms and different levels of aridity. Trait relationships for woody plants were weaker, but were more modularized than for herbs. Woody plants were more connected in economic traits, whereas herbs were more connected in structural traits to reduce damage caused by drought. Furthermore, the correlations between traits were tighter with higher edge density in semi-arid than in arid regions, suggesting that resource sharing and trait coordination are more advantageous under low drought conditions. Importantly, our results demonstrated that stem phosphorus concentration (SPC) was a hub trait correlated with other traits across drylands. Conclusions The results demonstrate that plants exhibited adaptations to the arid environment by adjusting trait modules through alternative strategies. PTNs provide a new insight into understanding the adaptation strategies of plants to drought stress based on the interdependence among plant functional traits.

Assembly of functional diversity in an oceanic island flora

2022

Oceanic island floras are well-known for their morphological peculiarities and exhibit striking examples of trait evolution1,2. These morphological shifts are commonly attributed to insularity and thought to be shaped by biogeographical processes and evolutionary histories of oceanic islands1,3. However, the mechanisms through which biogeography and evolution have shaped the distribution and diversity of plant functional traits remain unclear. Here, we describe the functional trait space of an oceanic island flora (Tenerife, Canary Islands, Spain) using extensive field and laboratory measurements, and relate it to global trade-offs in ecological strategies. We find that the island trait space is concentrated around a functional hotspot dominated by shrubs with a conservative life-history strategy. By dividing the island flora into species groups with distinct biogeographical distributions and diversification histories, our results reveal that long-distance dispersal, and the interpl...

Estimating Community-Level Plant Functional Traits in a Species-Rich Alpine Meadow Using UAV Image Spectroscopy

Remote Sensing

Plant functional traits at the community level (plant community traits hereafter) are commonly used in trait-based ecology for the study of vegetation–environment relationships. Previous studies have shown that a variety of plant functional traits at the species or community level can be successfully retrieved by airborne or spaceborne imaging spectrometer in homogeneous, species-poor ecosystems. However, findings from these studies may not apply to heterogeneous, species-rich ecosystems. Here, we aim to determine whether unmanned aerial vehicle (UAV)-based hyperspectral imaging could adequately estimate plant community traits in a species-rich alpine meadow ecosystem on the Qinghai–Tibet Plateau. To achieve this, we compared the performance of four non-parametric regression models, i.e., partial least square regression (PLSR), the generic algorithm integrated with the PLSR (GA-PLSR), random forest (RF) and extreme gradient boosting (XGBoost) for the retrieval of 10 plant community ...

Montane Temperate-Boreal Forests Retain the Leaf Economic Spectrum Despite Intraspecific Variability

Frontiers in Forests and Global Change, 2022

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected ...

Equilibrium in plant functional trait responses to warming is stronger under higher climate variability during the Holocene

Global Ecology and Biogeography, 2020

AimThe functional trait composition of plant communities is thought to be determined largely by climate, but relationships between contemporary trait distributions and climate are often weak. Spatial mismatches between trait and climatic conditions are commonly thought to arise from disequilibrium responses to past environmental changes. We aimed to investigate whether current trait–climate disequilibrium is likely to emerge during plant functional responses to Holocene climate warming.LocationNorth America.Time period14–0 ka.Major taxa studiedTerrestrial plants.MethodsWe joined global trait data with palaeoecological time series and climate simulations on 425 sites. We estimated plant community functional composition for three leaf traits involved in resource use. We then quantified disequilibrium in plant trait temporal responses to climate change during two contrasted periods: a period of high climate variability (14–7 ka) and a period of low climate variability (7–0 ka).ResultsF...

Drivers of change and conservation needs for vertebrates in drylands: an assessment from global scale to Sahara-Sahel wetlands

The European Zoological Journal, 2021

Drylands range across more than half of the global terrestrial area and harbour about a quarter of continental vertebrate species, many of them endemic. However, this fauna is being increasingly threatened, in particular the one that inhabits deserts, one of the last biomes on earth. This work tracks the most relevant global change drivers acting on drylands, especially in deserts and arid regions, the conservation actions being developed, and the research needs for vertebrate conservation, following IUCN standardised classification schemes. Using the Sahara-Sahel wetlands as case study, it is provided a detailed examination of these aspects to support regional biodiversity conservation and human welfare. Deserts and arid regions are threatened by the synergistic effects of increasing development of urban areas, agriculture, energy production, mining, transportation and service corridors, resulting in pollution, invasive species, human intrusions and disturbance, biological resource overuse and in general, natural system modifications. In addition, climate change together with social underdevelopment of many desert-range countries places the mitigation of threat factors in a large and complex web of global-local societal challenges. Conservation actions targeting land/ water and species protection and management, as well as education, awareness, capacity building, and legislation measures to increase livelihood development, are being developed. Additional research efforts are need to enhance biodiversity conservation planning, monitoring biodiversity and land-degradation status (based on Essential Biodiversity Variables), and quantification of socioeconomic factors associated with sustainable use of natural resources and human development. Sahara-Sahel wetlands are important life-support systems for both humans and vertebrates, the last vulnerable to listed global threats. They offer framework scenario to revert current environmental and societal challenges in deserts. Long-term conservation of desert vertebrate biodiversity requires appropriate policy instruments to promote sustainable use of natural resources. Raising environmental alertness within local communities of uniqueness of desert biodiversity is needed to promote policy change.

Using Trait-Based Methods to Study the Response of Grassland to Fertilization in the Grassland in Semiarid Areas in the Loess Plateau of China

Plants

Grassland is the dominant vegetation type in the Loess Plateau, and grassland productivity and processes are limited by nitrogen (N) and phosphorus (P). Studies have shown that productivity would change following fertilization in the grassland. The response of productivity to fertilization mainly depends on the dominant species traits. Trait-based methods provide a useful tool for explaining the variations in grassland productivity following fertilization. However, the relative contribution of plant functional traits to grassland productivity under N and P addition in the Loess Plateau is not clear. We measured aboveground biomass (AGB) and leaf N content (LN), leaf P content (LP), leaf N/P ratio (LN/P), specific leaf area (SLA), leaf tissue density (LTD), leaf dry matter content (LDMC), and maximum plant height (Hmax) to study how these plant functional traits regulate the relative biomass of different species and grassland productivity following fertilization. Our results showed, ...

Simulated rhizosphere deposits induce microbial N‐mining that may accelerate shrubification in the subarctic

Ecology, 2020

Climate change is exposing high-latitude systems to warming and a shift towards more shrub-dominated plant communities, resulting in increased leaf-litter inputs at the soil surface, and more labile root-derived organic matter (OM) input in the soil profile. Labile OM can stimulate the mineralization of soil organic matter (SOM); a phenomenon termed "priming." In N-poor subarctic soils, it is hypothesized that microorganisms may "prime" SOM in order to acquire N (microbial N-mining). Increased leaf-litter inputs with a high C/N ratio might further exacerbate microbial N demand, and increase the susceptibility of N-poor soils to N-mining. We investigated the N-control of SOM mineralization by amending soils from climate change-simulation treatments in the subarctic (+1.1°C warming, birch litter addition, willow litter addition, and fungal sporocarp addition) with labile OM either in the form of glucose (labile C; equivalent to 400 µg C/g fresh [fwt] soil) or alanine (labile C + N; equivalent to 400 µg C and 157 µg N/g fwt soil), to simulate rhizosphere inputs. Surprisingly, we found that despite 5 yr of simulated climate change treatments, there were no significant effects of the field-treatments on microbial process rates, community structure or responses to labile OM. Glucose primed the mineralization of both C and N from SOM, but gross mineralization of N was stimulated more than that of C, suggesting that microbial SOM use increased in magnitude and shifted to components richer in N (i.e., selective microbial N-mining). The addition of alanine also resulted in priming of both C and N mineralization, but the N mineralization stimulated by alanine was greater than that stimulated by glucose, indicating strong N-mining even when a source of labile OM including N was supplied. Microbial carbon use efficiency was reduced in response to both labile OM inputs. Overall, these findings suggest that shrub expansion could fundamentally alter biogeochemical cycling in the subarctic, yielding more N available for plant uptake in these N-limited soils, thus driving positive plant-soil feedbacks.

Above- and Belowground Plant Functional Composition Show Similar Changes During Temperate Forest Swamp Succession

Frontiers in Plant Science, 2021

Plant functional composition, defined by both community-weighted mean (CWM) traits and functional diversity, can provide insights into plant ecological strategies and community assembly. However, our understanding of plant functional composition during succession is largely based on aboveground traits. Here we investigated community-level traits and functional diversity for six pairs of analogous leaf and fine root traits of understory plants in a temperate forest swamp during succession with a decrease in soil pH and nutrient availability. CWMs of traits related to resource acquisition (including specific leaf area, specific root length, leaf N, leaf P, root N, and root P) decreased with succession, whereas those related to resource conservation (leaf dry matter content, root dry matter content, leaf tissue density, leaf C, and root C) increased along the forest swamp successional gradient. Multi-trait functional dispersion (FDis) of both leaf and fine root traits tended to decreas...

Predicting Thermal Adaptation by Looking Into Populations’ Genomic Past

Frontiers in Genetics, 2020

Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.