Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure (original) (raw)
Related papers
Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells
Journal of Orthopaedic Research, 2003
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. The objective of this study was to establish a method to investigate the ranges of constructive and destructive hydrostatic loading frequencies and amplitudes in preventing or inducing extracellular disc matrix degradation. Using a hydraulic chamber, normal rabbit intervertebral disc cells were tested under dynamic hydrostatic loading. Monolayer cultures of disc outer annulus cells and 3-dimensional (3-D) alginate cultures of disc nucleus pulposus cells were tested. Effects of different loading amplitudes (3-D culture, 0-3 MPa; monolayer, 0-1.7 MPa) and frequencies (1-20 Hz) on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 'H-proline-labeled molecules into culture medium. High frequency and high amplitude hydrostatic stress stimulated collagen synthesis in cultures of outer annulus cells whereas the lower amplitude and frequency hydrostatic stress had little effect. For the same loading duration and repetition, neither treatment significantly affected the relative amount of protein released from the cell layers, indicating that protein degradation and stability were unaffected. In the 3-D nucleus culture, higher amplitude and frequency increased synthesis rate and lowered degradation. In this case, loading amplitude had a stronger influence on cell response than that of loading frequency. Considering the ranges of loading amplitude and frequency used in this study, short-term application of high loading amplitudes and frequencies was beneficial in stimulation of protein synthesis and reduction of protein degradation.
Bioreactors with hydrostatic pressures imitating physiological environments in intervertebral discs
Journal of Tissue Engineering and Regenerative Medicine, 2017
Intervertebral discs are normally exposed to variety of loads and stresses but hydrostatic pressure (HP) could be the main biosignal for chondrogenic cell differentiation and maintenance of this tissue. Although there are simple approaches to intermittently expose cell cultures to HP in separate material testing devices, utilization of biomimetic bioreactors aiming to provide in vitro conditions mimicking those found in vivo, attracts special attention. However, design of such bioreactors is complex due to the requirement of high HP magnitudes (up to 3 MPa) applied in different regimes mimicking pressures arising in IVD during normal daily activities. Furthermore, efficient mass transfer has to be facilitated to cells within 3D scaffolds while the engineering challenges include avoidance/removal of gas bubbles in the culture medium before pressurization as well as selection of appropriate, biocompatible construction materials and maintenance of sterility during cultivation. Here we review approaches to induce HP in 2D and 3D cell cultures categorized into 5 groups: (I) discontinuous systems with direct pressurization of the cultivation medium by a piston, (II) discontinuous systems with indirect pressurization by a compression fluid, (III) continuous systems with direct pressurization of the cultivation medium, static culture, (IV) continuous systems with culture perfusion, and (V) systems applying HP in conjunction with other physical signals. Although the complexity is increasing as additional features are added to the systems, the need to understand HP effects on cells and tissues in a physiologically relevant, yet precisely controlled, environment together with current technological advancements are leading toward innovative bioreactor solutions.