Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53 (original) (raw)
Abstract
Many DNA tumor viruses express a protein that inhibits transcriptional activation by the tumor-suppressing transcription factor p53. We report that adenovirus E1B 55K represses p53-mediated activation by a mechanism not described previously. E1B 55K binds p53 without displacing it from its DNA-binding site. A fusion of E1B 55K to the GAL4 DNA-binding domain represses transcription from a variety of promoters with engineered upstream GAL4-binding sites. Mutations within E1B 55K that interfere with its transforming activity and its ability to inhibit p53-mediated trans-activation also interfere with transcriptional repression by the GAL4-55K fusion. These results demonstrate that E1B 55K functions as a direct transcriptional repressor that is targeted to p53-responsive genes by binding to p53.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (58)
- Agoff, S.N.; J. Hou, D.I.H. Linzer, and B. Wu. 1993. Regulation of the human hsp 70 promoter by p53. Science 259: 84-87.
- Bargonetti, J., I. Reynisdottir, P.N. Friedman, and C. Prives. 1992. Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes & Dev. 6: 1886-1898.
- Baniahmad, A., A.C. Kohne, and R. Renkawitz. 1992. A trans- ferable silencing domain is present in the thyroid hormone receptor, in the v-erbA oncogene product and in the retinoic acid receptor. EMBO J. 11: 1015-1023.
- Brand, A.H., L. Breeden, J. Abraham, R. Sternglanz, and K. Nasmyth. 1985. Characterization of a "silencer" in yeast: A DNA sequence with properties opposite to those of a tran- scriptional enchancer. Cell 41: 41-48.
- Carey, M., J. Leatherwood, and M. Ptashne. 1990. A potent GAL4 derivative activates transcription at a distance in vitro. Science 247: 710-712.
- Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and -independent pathways. Na- ture 362:849-852.
- Damm, K., C.C. Thomson, and R.M. Evans. 1989. Protein en- coded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593-597.
- Dignam, J.D., R.M. Lebovitz, and R.G. Roeder. 1983. Accurate transcript initiation by RNA Pol II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11: 1475- 1489.
- Diller, L., J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Gebhardt, B. Bressac, M. Ozturk, S.J. Baker, B. Vogelstein, and S.H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10: 5772-5781.
- Elroy-Stein, O., T.R. Fuerst, and B. Moss. 1989. Cap-indepen- dent translation of mRNA conferred by encephalomyocardi- tis virus 5' sequence improves the performance of the vac- cinia virus/bacteriophage T7 hybrid expression system. Proc. Natl. Acad. Sci. 86: 6126-6130.
- Gill, G. and M. Ptashne. 1988. Negative effect of the transcrip- tional activator GAL4. Nature 334: 721-724.
- Ginsberg, D., F. Mechta, M. Yaniv, and M. Oren. 1991. Wild- type p53 can down-modulate the activity of various promot- ers. Proc. Natl. Acad. Sci. 88: 9979-9983.
- Gorman, CM., L.F. Moffat, and B.H. Howard. 1982. Recombi- nant genomes which express chloramphenicol acetyltrans- ferase in mammalian cells. Mol. Cell. Biol. 2: 1044-1051.
- Han, K. and J.L. Manley. 1993. Transcriptional repression by the Drosophila even-skipped protein: Definition of a minimal repression domain. Genes & Dev. 7: 491-503.
- Farmer, G., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature 358: 83-86.
- Harlow, E., L.V. Crawford, D.C. Pirn, and N.M. Williamson. 1981. Monoclonal antibodies specific for simian virus 40 tu- mor antigens. /. Virol. 39: 861-869.
- Hartwell, L. 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543-546.
- Harvey, D.M. and A.J. Levine. 1991. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes &. Dev. 5: 2375- 2385.
- Johnson, A.D. and I. Herskowitz. 1985. A repressor (MATa2 product) and its operator control expression of a set of cell type specific genes in yeast. Cell 42: 237-247.
- Kao, C.C, P.R. Yew, and A.J. Berk. 1990. Domains required for in vitro association between the cellular p53 and the aden- ovirus 2 ElB 55K proteins. Virology 179: 806-814.
- Kastan, M.B., Q. Zhan, W.S. El-Deiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein, and A.J. Fomace Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71: 587-597.
- Keleher, C.A., M.J. Redd, J. Schultz, M. Carlson, and A.D. Johnson. 1992. Ssn6-Tupl is a general repressor of transcrip- tion in yeast. Cell 68: 709-719.
- Kern, S.E., K.W. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708- 1711.
- Kern, S.E., J.A. Pietenpol, S. Thiagalingam, A. Seymour, K.W. Kinzler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827- 830.
- Lane, D.P. 1992. p53, guardian of the genome. Nature 358: 15- 16. . 1993. A death in the life of p53. Nature 362: 786-787.
- Levine, A.J., J. Momand, and C.A. Finlay. 1991. The p53 tumor suppressor gene. Nature 351: 453-456.
- Levine, M. and J.L. Manley. 1989. Transcriptional repression of eukaryotic promoters. Cell 59: 405-408.
- Licht, J.D., M.J. Grossel, J. Figge, and U.M. Hansen. 1990. Drosophila kruppel protein is a transcriptional repressor. Nature 346: 76-79.
- Lin, D., M.T. Shields, S.J. Ullrich, E. Appella, and W.E. Mercer. 1992. Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late Gl phase. Proc. Natl. Acad. Sci. 89: 9210-9214.
- Liu, X., CW. Miller, P.H. Koeffler, and A.J. Berk. 1993. The p53 activation domain binds the TATA box-binding polypeptide in holo-TFIID, and a neighboring p53 domain inhibits tran- scription. Mol. Cell. Biol. 13: 3291-3300.
- Livingstone, L.R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T.D. Tlsty. 1992. Altered cell cycle arrest and gene amplifi- cation potential accompany loss of wild-type p53. Cell 70: 923-935.
- Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847-849.
- Mack, D.H., J. Vartikar, J.M. Pipas, and L.A. Laimins. 1993. Specific repression of TATA-mediated but not initiator-me- diated transcription by wild-type p53. Nature 363: 281-283.
- Madden, S.L., D.M. Cook, J.F. Morris, A. Gashler, V.P. Sukhatme, and F.J. Rauscher III. 1991. Transcriptional re- pression mediated by the WTl Wilms tumor gene product. Science 253: 1550-1553.
- Martin, K.J., J.W. Lillie, and M.R. Green. 1990. Evidence for an interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346: 147-152.
- Masuda, H., C Miller, P. Koeffler, H. Battifora, and M.J. Cline. 1987. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. 84: 7716-7719.
- Momand, J., G.P. Zambetti, D.C. Olson, D. George, and A.J. Levine. 1992. The mdm-2 oncogene product forms a com- plex with the p53 protein and inhibits p53-mediated trans- Yew et al. activation. Cell 69: 1237-1245.
- Oliner, J.D., J.A. Pietenpol, S. Thiagalingam, J. Gyuris, K.W. Kinzler, and B. Vogelstein. 1993. Oncoprotein MDM2 con- ceals the activation domain of tumour suppressor p53. Na- ture 362: 857-860.
- Omelles, D.A. and T. Shenk. 1991. Localization of the adeno- virus early region IB 55-kilodalton protein during lytic in- fection: Association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. /. Virol. 65: 424- 439.
- Peterson, C.L., W. Kruger, and I. Herskowitz. 1991. Afunctional interaction between the C-terminal domain of RNA poly- merase II and the negative regulator SINl. Cell 64: 1135- 1143.
- Renkawitz, R. 1990. Transcriptional repression in eukaryotes. Trends Genet. 6: 192-197.
- Sadowski, I. and M. Ptashne. 1989. A vector for expressing GAL4( 1-147) fusions in mammalian cells. Nucleic Acids Res. 17: 7539.
- Saha, S., J.M. Brickman, N. Lehming, and M. Ptashne. 1993. New eukaryotic transcriptional repressors. Nature 363: 648-652.
- Samow, P., Y.S. Ho, J. Williams, and A.J. Levine. 1982a. Aden- ovirus Elb-58kd tumor antigen and SV40 large tumor anti- gen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387-394.
- Samow, P., C.A. Sullivan, and A.J. Levine. 1982b. A monoclonal antibody detecting the adenovirus type 5 Elb-58Kd tumor antigen: Characterization of the Elb-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology 120:510-517.
- Scheffner, M., B.A. Wemess, J.M. Huibregtse, A.J. Levine, and P.M. Howley. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. CeU 63: 1129-1136.
- Seto, E., A. Usheva, G.P. Zambetti, J. Momand, N. Horikoshi, R. Weirunarm, A.J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcrip- tion. Proc. Natl. Acad. Sci. 89: 12028-12032.
- Shaw, P., R. Bovey, S. Tardy, R. SahU, B. Sordat, and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. 89: 4495-4499.
- Shi, Y., E. Seto, L.-S. Chang, and T. Shenk. 1991. Transcriptional repression by YYl, a human GLI-kruppel-related protein, and relief of repression by adenovirus El A protein. Cell 67: 377-388.
- Truant, R., H. Xiao, J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of himian p53 and the TATA box-binding protein. /. Biol. Chem. 268: 2284-2287.
- Vogelstein, B. and K.W. Kinzler. 1992. p53 function and dys- fimction. Cell 70: 523-526.
- Yew, P.R. and A.J. Berk. 1992. Inhibition of p53 transactivation required for transformation by adenovirus early IB protein. Nature 357: 82-85.
- Yew, P.R., C.C. Kao, and A.J. Berk. 1990. Dissection of fvmc- tional domains in the adenovirus 2 early IB 55K polypeptide by suppressor-linker tnsertional mutagenesis. Virology 179: 795-805.
- Yin, Y., M.A. Tainsky, F.Z. Bischoff, L.C. Strong, and G.M. Wahl. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937-948.
- Zambetti, G.P., J. Bargonetti, K. Walker, C. Prives, and A.J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes & Dev. 6: 1143-1152.
- Zantema, A., P.O. Schrier, A. Davis-Olivier, T. van Laar, R.T.M.J. Vaessen, and A. van der Eb. 1985a. Adenovirus se- rotype determines association and localization of the large ElB tumor antigen with cellular tumor antigen p53 in trans- formed cells. Mol. Cell. Biol. 5: 3084-3091.
- Zantema, A., J.A.M. Fransen, A. Davis-Olivier, F.C.S. Ramaek- ers, G.P. Voojis, B. DeLeys, and A.J. van der Eb. 1985b. Lo- calization of the ElB proteins of adenovirus 5 in transformed cells as revealed by interaction with monoclonal antibodies. Virology 142: 44-58.
- Zauberman, A., Y. Barak, N. Ragimov, N. Levy, and M. Oren. 1993. Sequence-specific DNA binding by p53: Identification of target sites and lack of binding to p53-MDM2 complexes. EMBO J. 12: 2799-2808.