Optimization of structures, biochemical properties of ketorolac and its degradation products based on computational studies (original) (raw)

2019, DARU Journal of Pharmaceutical Sciences

Background Ketorolac (KTR) is used as an analgesic drug with an efficacy close to that of the opioid family. It is mainly used for the short term treatment of post-operative pain. It can inhibit the prostaglandin synthesis by blocking cyclooxygenase (COX). Methods In this investigation, the inherent stability and biochemical interaction of Ketorolac (KTR) and its degradation products have been studiedon the basis of quantum mechanical approaches. Density functional theory (DFT) with B3LYP/ 6-31G (d) has been employed to optimize the structures. Thermodynamic properties, frontier molecular orbital features, dipole moment, electrostatic potential, equilibrium geometry, vibrational frequencies and atomic partial charges of these optimized structureswere investigated. Molecular docking has been performed against prostaglandin H2 (PGH2) synthase protein 5F19 to search the binding affinity and mode(s). ADMET prediction has performed to evaluate the absorption, metabolism and carcinogenic properties. Results The equilibrium geometry calculations support the optimized structures. Thermodynamic results disclosed the thermal stability of all structures. From molecular orbital data, all the degradents are chemically more reactive than parent drug (except K3). However, the substitution of carboxymethyl radicalin K4 improved the physicochemical properties and binding affinity. ADMET calculations predict the improved pharmacokinetic and non-carcinogenic properties of all degradents. Conclusion Based on physicochemical, molecular docking, and ADMET calculation, this study can be helpful to understand the biochemical activities of Ketorolac and its degradents and to design a potent analgesic drug.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.