The effective field theory of dark matter direct detection (original) (raw)

General analysis of direct dark matter detection: From microphysics to observational signatures

Physical Review D, 2015

Beginning with a set of simplified models for spin-0, spin-1 2 , and spin-1 dark matter candidates using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous and which are unlikely or subdominant. We find that there are operators which are common to all spins as well operators which are unique to spin-1 2 and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete roadmap for taking generic fundamental dark matter theories and calculating rates in direct detection experiments. This provides a useful guide for experimentalists designing experiments and theorists developing new dark matter models.

A General Analysis of Direct Dark Matter Detection: From Microphysics to Observational Signatures

Beginning with a set of simplified models for spin-0, spin-$\half$, and spin-1 dark matter candidates using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous and which are unlikely or sub-dominant. We find that there are operators which are common to all spins as well operators which are unique to spin-$\half$ and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete roadmap for taking generic ...

A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter

2010

We perform a model-independent classification of Weakly Interacting Massive Particle (WIMP) dark matter candidates that have the property that their scattering off nucleons is dominated by spin-dependent interactions. We study renormalizable theories where the scattering of dark matter is elastic and arises at tree-level. We show that if the WIMP-nucleon cross section is dominated by spin-dependent interactions the natural dark matter candidates are either Majorana fermions or real vector bosons, so that the dark matter particle is its own anti-particle. In such a scenario, scalar dark matter is disfavored. Dirac fermion and complex vector boson dark matter are also disfavored, except for very specific choices of quantum numbers. We further establish that any such theory must contain either new particles close to the weak scale with Standard Model quantum numbers, or alternatively, a Z′Z'Z gauge boson with mass at or below the TeV scale. In the region of parameter space that is of interest to current direct detection experiments, these particles naturally lie in a mass range that is kinematically accessible to the Large Hadron Collider (LHC).

Update of the direct detection of dark matter and the role of the nuclear spin

Physical Review D, 2001

We update our exploration of the minimal supersymmetric standard model 共MSSM兲 parameter space at the weak scale where new accelerator and cosmological constraints are respected. The dependence of weakly interacting massive particle nucleon cross sections on parameters of the MSSM, uncertainties of the nucleon structure and other theoretical assumptions such as universality and coannihilation are considered. In particular, we find that the coannihilation does not have a significant effect on our analysis in certain regions which are allowed even with coannihilation. The new cosmological constraint on the relic neutralino density used in the form 0.1⬍⍀ ␹ h 2 0 ⬍0.3 also does not significantly affect the regions of allowed neutralino-nucleon cross sec- tions. We notice that for nuclear targets with spin the spin-dependent interaction may determine the lower bound for the direct detection rate when the cross section of the scalar interaction drops below about 10 ⫺12 pb.

On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions

Journal of Cosmology and Astroparticle Physics, 2016

In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the upper limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z ′ portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.

Dark matter detectors as a novel probe for light new physics

Physical Review D

We explore the prospect of constraining light mediators at the next generation direct detection dark matter detectors through coherent elastic neutrino-nucleus scattering (CEνNS) and elastic neutrino-electron scattering (EνES) measurements. Taking into account various details like the quenching factor corrections and atomic binding effects, we obtain the model independent projected sensitivities for all possible Lorentz invariant interactions, namely scalar (S), pseudoscalar (P), vector (V), axial vector (A) and tensor (T). For the case of vector interactions, we also focus on two concrete examples: the well-known U (1) B−L and U (1) Lµ−Lτ gauge symmetries. For all interaction channels X = {S, P, V, A, T }, our results imply that the upcoming dark matter detectors have the potential to place competitive constraints, improved by about one order of magnitude compared to existing ones from dedicated CEνNS experiments, XENON1T, beam dump experiments and collider probes.

Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach

Physics of the Dark Universe, 2013

If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W + W − , hh, and ff , and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals. PACS numbers: 98.70.Cq, 95.35.+d, 95.30.Cq, 95.55.Ka, 95.85.Ry

Dark matter direct detection with spin-2 mediators

Proceedings of The 39th International Conference on High Energy Physics — PoS(ICHEP2018), 2019

We consider models where a massive spin-two resonance acts as the mediator between Dark Matter (DM) and the SM particles through the energy-momentum tensor. We examine the effective theory for fermion, vector and scalar DM generated in these models and find novel types of DM-SM interaction never considered before. We identify the effective interactions between DM and the SM quarks when the mediator is integrated out, and match them to the gravitational form factors relevant for spin-independent DM-nucleon scattering. We also discuss the interplay between DM relic density conditions, direct detection bounds and collider searches for the spin-two mediator. * Speaker.

Effective field theory analysis of the first LUX dark matter search

Physical review, 2021

The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6 × 10 −46 cm 2 on the spinindependent WIMP-nucleon elastic scattering cross section based on a 1.4 × 10 4 kg • day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUX's first science run. Limits are placed on each coupling as a function of WIMP mass.