Sugar cane bagasse ash as a pozzolanic material (original) (raw)
Related papers
Characterization of sugar cane bagasse ash as supplementary material for Portland cement
Ingeniería e Investigación, 2014
Sugar Cane Bagasse is a by-product of the sugar agro-industry; it is partly used as fuel. However, bagasse ash (SCBA) is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows high percentages of silica, 76.3% and 63.2%. The mineralogical and morphological characteristics of the waste were determined by X-ray diffraction patterns (XRD), thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The pozzolanic activity of SCBA was evaluated using the Frattini test and the strength activity index test (SAI). The ASTM C618 defines an SAI of at least 75% as a requirement for classifying material as a pozzolan. This condition was achieved in the experiments performed. The results indicate that SCBA produced in the manufacture of commercial cements can be recycled for use as pozzolanic material. This supplementary material can partially replace cement and therefore reduce CO2 emissions.
Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars
Sugar cane bagasse ash (SCBA) is generated as a combustion by-product from boilers of sugar and alcohol factories. Composed mainly of silica, this by-product can be used as a mineral admixture in mortar and concrete. Several studies have shown that the use of SCBA as partial Portland cement replacement can improve some properties of cementitious materials. However, it is not yet clear if these improvements are associated to physical or chemical effects. This work investigates the pozzolanic and filler effects of a residual SCBA in mortars. Initially, the influence of particle size of SCBA on the packing density, pozzolanic activity of SCBA and compressive strength of mortars was analyzed. In addition, the behavior of SCBA was compared to that of an insoluble material of the same packing density. The results indicate that SCBA may be classified as a pozzolanic material, but that its activity depends significantly on its particle size and fineness.
Development of Local Bagasse Ash as Pozzolanic Material for Use in Concrete
Pakistan Journal of Engineering and Applied Sciences, 2016
Concrete is one of the extensively used materials in construction industry. General construction uses ordinary Portland cement, however for specialized projects specific properties of concrete are tailored using different pozzolans. Sugarcane bagasse ash is abundantly available in Pakistan as being obtained from sugar mills which uses sugarcane bagasse as fuel. This research is focused to determine the maximum pozzolanic activity of sugarcane bagasse ash. Raw bagasse ash was calcined at temperatures of 500, 600 and 700 degree Celsius for 1, 2 and 3 hours heating duration. ASTM C 618 and C 311 were used to determine the suitability of sugarcane bagasse ash for its pozzolanic activity. It was found that maximum pozzolanic activity is achieved at a temperature of 500 degree Celsius for 1 hour heating duration and same was verified by X-ray diffraction analysis of calcined sugarcane bagasse ash
Utilization of Sugar Mill Waste Ash as Pozzolanic Material in Structural Mortar
Minerals
Bagasse is produced as a waste in the sugar production process, which is used as fuel to stoke boilers in the sugar mills. The concluding product of this burning is residual sugarcane bagasse ash (BA), which is normally dumped or used as low-quality fertilizer. The ash for this study was collected from a reputed sugar mill located in the northern region of Bangladesh. Type I Portland cement (PC) was partially replaced with that finely ground bagasse ash without any pretreatment. The ground BA was used as a replacement for Portland cement at 5, 10, 15, 20, 25 and 30% of BA, respectively, in structural mortar. In addition, chemical characterization, specific gravity, X-ray diffraction (XRD), scanning electron microscopy (SEM), setting time, a strength activity index, compressive strength, water absorption, density and durability in a chloride environment of mortar were determined. The strength activity index result indicates that the used BA has the pozzolanic properties to be used as...
Influence of Production Methodology on the Pozzolanic Activity of Sugarcane Bagasse Ash
MATEC Web of Conferences, 2019
Previous studies have shown the possibility of successful implementation of Sugarcane Bagasse Ash (SCBA) as a Supplementary Cementitious Material (SCM) in concrete production. However, its use has been constrained in the construction industry due to lack of a suitable largescale processing methodology of SCBA. In this study, the pozzolanic performance of SCBA produced using three different methodologies (i.e., uncontrolled burning, controlled burning, and post-processing of uncontrolled burning) was investigated. Experimental findings suggested that SCBA obtained from uncontrolled burning (raw SCBA) is not suitable for concrete application due to high carbon content. However, post-processing of raw SCBA yields a material with an adequate pozzolanic performance for concrete applications, which is comparable to SCBA produced under controlled burning conditions.
SUGARCANE ASH AS CEMENT POZZOLANA BINDER IN CEMENT PASTES
Sugarcane is one of the major crops grown in Egypt, after extraction of all economical sugar from sugarcane, about 50% fibrous residue is obtained, when it is burned at elevated temperatures it leaves sugarcane bagasse ash which contains high amounts of silica, aluminum and calcium oxides. This study was carried out to study the pozzolanic activity of that ash and its suitability as binder partially replacing cement. During this study burning of sugarcane bagasse was carried out at 600 o C for 5 hours, grounded in ball mill then used as cement replacement with 5%, 10%, 15% and 20%. The morphology of samples with and without that ash was studied using Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The results showed that sugarcane bagasse ash can be used as a pozzolanic material, since compressive strength gave better results than control specimens for the ratio 5% and 10% substitution of cement with that ash.
Characteristic evaluation of concrete containing sugarcane bagasse ash as pozzolanic admixture
Research on Engineering Structures and Materials
Disclaimer All the opinions and statements expressed in the papers are on the responsibility of author(s) and are not to be regarded as those of the journal of Research on Engineering Structures and Materials (RESM) organization or related parties. The publishers make no warranty, explicit or implied, or make any representation with respect to the contents of any article will be complete or accurate or up to date. The accuracy of any instructions, equations, or other information should be independently verified. The publisher and related parties shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with use of the information given in the journal or related means. Published articles are freely available to users under the terms of Creative Commons Attribution-NonCommercial 4.0 International Public License, as currently displayed at here (the "CC BY-NC").
This paper presents the use of sugarcane bagasse ash (SCBA) as a pozzolanic material for producing high-strength concrete. The utilization of industrial and agricultural waste produced by industrial processes has been the focus on waste reduction. Ordinary Portland cement (OPC) is partially replaced with finely sugarcane bagasse ash. In this research physical characteristics, chemical combination (XRF test), TG-DTA were investigated and compared with cement.The concrete mixtures, in part, are replaced with 0%, 10%,15%, 20%,25% and 30% of BA respectively. In addition, the compressive strength, the flexural strength, the split tensile tests were determined. The bagasse ash was sieved through No. 600 sieve. The mix design used for making the concrete specimens was based on previous research work from literature. The water –cement ratios varied from 0.44 to 0.63. The tests were performed at 7, 28,56 and 90 days of age in order to evaluate the effects of the addition SCBA on the concrete. The test result indicate that the strength of concrete increase up to 15% SCBA replacement with cement.
Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete
Cement and Concrete …, 2009
Sugar cane bagasse ash, a byproduct of sugar and alcohol production, is a potential pozzolanic material. However, its effective application in mortar and concrete requires first the controlled use of grinding and classification processes to allow it to achieve the fineness and homogeneity that are required to meet industry standards. The present paper investigates the role of mill type and grinding circuit configuration in grinding in laboratory-and pilot plant-scale on the particle size, specific surface area and pozzolanic activity of the produced ashes. It was observed that, although different size distributions were produced by the different mills and milling configurations, the pozzolanic activity of the ground ash was directly correlated to its fineness, characterized by its 80% passing size or Blaine specific surface area. From a low pozzolanic activity of less than 50% of the as-received ash, values above 100% could be reached after prolonged grinding times. Electric power requirements to reach the minimum pozzolanic activity were estimated to be in the order of 42 kWh/t in an industrial ball mill. Incorporation of an ultrafinely-ground ash in a high-performance concrete in partial replacement of Portland cement (10, 15 and 20% by mass) resulted in no measurable change in mechanical behavior, but improved rheology and resistance to penetration of chloride ions.
Consistency, Setting Times and Chemical Properties of Sugar Cane Bagasse Ash Cement
2016
This research work aims at determining the physical and chemical properties of sugar cane bagasse ash cement (SCBAC). The physical properties investigated in this research were initial and final setting times, consistency tests and chemical analysis tests using X-ray Florescence Spectral analysis test. These tests were carried out to compare the properties of the Sugar cane bagasse ash cement with the normal cement. The SCBA were replaced at 0%, 5%, 10%, 15% and 20% proportions of cement content. From the test results, the consistency was found to increase as the Sugar Cane Bagasse Ash(SCBA) proportion increased from 32.5% for the pure cement to 40% for 20% sugar Cane Bagasse Ash replacement with cement. This showed that the more the proportion of the SCBA in cement, the higher the amount of water required to get the right consistency. The initial setting time increased as the proportion of SCBA increased from 2.25 hours at 0% to 3.42 hours for 20% replacement but was within the acc...