Potential Therapeutic Targets of Nafld in Offsprings with Respect to Maternal Western Type Diet (original) (raw)

Abstract

Maternal diet strongly influences development of fetal health status. High fat diets can result in metabolic dysfunctions and even cause hepatic steatosis in the offspring. Nonalcoholic fatty liver disease (NAFLD) can result in liver cirrhosis and cancer. Absence of any approved and effective treatment strategy of NAFLD and incompletely understood pathogenesis is posing great challenges for its management. One major factor for this disease progression is maternal obesity and according to World Health Organization (WHO) worldwide 1.6 billion adults are overweight (BMI 25 kg/m) and 400 million are obese (BMI 30kg/m). These alarming data demand more specific therapeutic targets for NAFLD even more urgently than ever before. The mainstay of management continues to be dietary and lifestyle changes tailored to the individual patient, but these modifications have always been difficult to maintain and this approach alone could not cope up with the disease epidemic. However, understanding of...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (68)

  1. Judi W, Erica G. H, Bagge S R, Wadephul F, Jomeen J-Maternal-fetal relationships and psychological health: emerging research directions. Journal of Reproductive and Infant Psychology. 2013; 31:490-499
  2. Bayol SA, Simbi BH, Stickland NC-A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol. 2005; 567:951 -961.
  3. Barker DJ-The developmental origins of adult disease. J Am Coll Nutr. 2004; 23:588S-595S.
  4. Langley-Evans SC, Clamp AG, Grimble RF, Jackson AA-Influence of dietary fats upon systolic blood pressure in the rat. Int J Food Sci Nutr. 1996; 47: 417-425.
  5. Koukkou E, Ghosh P, Lowy C, L. Poston-Offspring of normal and diabetic rats fed saturated fat in pregnancy demonstrate vascular dysfunction. Circulation. 1998; 98:2899-2904.
  6. Siemelink M, Verhoef A, Dormans JA, Span PN, Piersma AH-Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia. 2002; 45:1397-1403.
  7. Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D, Dominiczak AF, Hanson MA, Poston L-Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;4:168-175.
  8. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC, Bateman AC, Clough GF, Poston L, Hanson MA, McConnell JM, Byrne CD-Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology. 2009; 50:1796-1808.
  9. Elahi MM, Cagampang FR, Mukhtar D, Anthony FW, Ohri SK, Hanson MA-Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr. 2009; 102:514-519.
  10. Gregorio BM, Souza MelloV, CarvalhoJJ, Mandarim-de-Lacerda CA, Aguila MB-Maternal high-fat intake predisposes nonalcoholic fatty liver disease in C57BL/6 offspring. Am J Obstet Gynecol. 2010; 203:495-495.
  11. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, Torsoni AS, Torsoni MA- Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem. 2012; 23:341-348.
  12. Kjaergaard M, Nilsson C, Rosendal, A, Nielsen, MO, Raun, K-Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile. Acta Physiol (Oxf). 2013; 210:142-53.
  13. Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuels-son AM, Pombo J, Maragkoudaki X, Butt A, Sar aswati R, Novelli M, Fusai G, Poston L, Taylor PD, Oben JA-Maternal obesity © 2018 Life Science Informatics Publication All rights reserved Peer review under responsibility of Life Science Informatics Publications 2018 Sept -Oct RJLBPCS 4(5) Page No.9
  14. programs offspring non-alcoholic fatty liver disease via innate immune dysfunction in mice. Hepatology. 2013; 58:128-138.
  15. Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C, Soeda J, Fernandez-Twinn DS, Martin-Gronert MS, Ozanne SE Sigala B, Novelli M, Poston L, Taylor PD-Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol. 2010; 52:913-920.
  16. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M-Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64:73-84.
  17. Prabhakar A, Ambili NR, Unnikrishnan Kartha TD, Renymol B-Prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus and its correlation with coronary artery disease (CAD). Int. Journal of Research in Medical Sciences. Int J Res Med Sci. 2017; 5:5175-5181.
  18. Khan RS, Philip N. Newsome-NAFLD in 2017: Novel insights into mechanisms of disease progression. Nature Reviews Gastroenterology & Hepatology. 2018; 15:71-72.
  19. Tailleux A, Wouters K, Staels B -Roles of PPARs in NAFLD: Potential therapeutic targets. Biochimica et Biophysica Acta. 2012; 1821:809-818.
  20. Iain D-NAFLD: HIF2α: a new therapeutic target for NAFLD. Nature Reviews Gastroenterology & Hepatology. 2017; 14:690-691.
  21. Eguchi A, Povero D, Alkhouri N, Feldstein AE-Novel therapeutic targets for nonalcoholic fatty liver disease.Expert Opin Ther Targets. 2013; 17:773-9.
  22. Pruis MGM, Lendvai A, Bloks VM, Zwier MV, Baller JFW, Bruin AD, Groen AK, Pl€osch T- Maternal western diet primes non-alcoholic fatty liver disease in adult mouse offspring. ActaPhysiol. 2014; 210:215-227
  23. R Core Team-R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2018;
  24. Wickham H-readxl: Read Excel Files. 1.1.0. ed.: R package. 2018;
  25. Wickham H-ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
  26. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J-Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 2004, 5, R80.
  27. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth © 2018 Life Science Informatics Publication All rights reserved Peer review under responsibility of Life Science Informatics Publications 2018 Sept -Oct RJLBPCS 4(5) Page No.10
  28. GK, Tenenbaum D, Waldron L, Morgan M-Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods. 2015; 12: 115-121
  29. Davis S, Meltzer P-GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007; 14:1846-1847.
  30. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK-limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015; 43:e47.
  31. Aibar S, Fontanillo C, Droste C, De Las Rivas J-Functional Gene Networks: R/Bioc package to generate and analyze gene networks derived from functional enrichment and clustering. Bioinformatics. 2015; 31:1686-1688.
  32. Alexa A, Rahnenfuhrer J-topGO: EnrichmentAnalysis for Gene Ontology. 2010; Available at bioconductor.org/packages.
  33. Mantri NL, Ford R, Coram TE, Pang EC-Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics. 2007; 8:303.
  34. Tarca A L, Romero R, DraghiciS -Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol. 2006; 195:373-388.
  35. Pevsner J. Bioinformatics and functional genomics. John Wiley and Sons, 2009.
  36. Bitar M, Kuiper S, O'Brien E, Barry G-Using Human iPSC-Derived Neurons to Uncover Activity-Dependent Non-Coding RNAs. Genes. 2017; 8:401.
  37. Arenas AF, Salcedo GE, Gomez-Marin JE-R Script Approach to Infer Toxoplasma Infection Mechanisms from Microarrays and Domain-Domain Protein Interactions. Bioinformatics and Biology Insights. 2017;11:1-10
  38. Knight JS, Meng H, Coit P, Yalavarthi S, Sule G, Gandhi AA, Grenn RC, Mazza LF, Ali RA, Renauer P, Wren JD, Bockenstedt PL, Wang H, Eitzman DT, Sawalha AH-Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight. 2017; 2:e93897.
  39. Cohen JC, Horton JD, Hobbs HH-Human fatty liver disease: old questions and new insights. Science. 2011; 332:1519-1523.
  40. Ibrahim SH, Kohli R, Gores GJ-Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastroenterol. Nutr.2011;53:131-140.
  41. Oseini A, Sanyal AJ-Therapies in Non-Alcoholic Steatohepatitis (Nash). Liver international : official journal of the International Association for the Study of the Liver. 2017; 37:97-103.
  42. Liu R, Wang X, Aihara K, Chen L-Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev. 2014; 34:455-78.
  43. © 2018 Life Science Informatics Publication All rights reserved Peer review under responsibility of Life Science Informatics Publications 2018 Sept -Oct RJLBPCS 4(5) Page No.11
  44. Liu ZP, Wang Y, Zhang XS, Chen L-Network-based analysis of complex diseases. IET Syst Biol. 2012; 3:22-33.
  45. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B, Assmann V, Elshamy WM, Rual JF, Levine D, Rozek LS, Gelman RS, Gunsalus KC, Greenberg RA, Sobhian B, Bertin N, Venkatesan K, Ayivi-Guedehoussou N, Solé X, Hernández P, Lázaro C, Nathanson KL, Weber BL, Cusick ME, Hill DE, Offit K, Livingston DM, Gruber SB, Parvin JD, Vidal M-Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007; 39: 1338-49.
  46. Fruchterman T M J, Reingold E M-Graph Drawing by Force-Directed Placement. Software: Practice and Experience. 1991; 21:1129-1164.
  47. Gomez-Ramirez J, Wu J-Network-Based Biomarkers in Alzheimer's disease: Review and Future Directions. Frontiers in Aging Neuroscience. 2014; 6:12.
  48. Power J D, Cohen A L, Nelson S M, WigG S, Kelly Anne Barnes, Jessica A Church,Alecia C Vogel, Timothy O Laumann, Fran M Miezin,Bradley L Schlaggar, Steven E Petersen- Functional network organization of the human brain. Neuron. 2011; 72:665-678.
  49. Francesconi M, Remondini D, Neretti N, John M Sedivy, Leon N Cooper, Ettore Verondini, Luciano Milanesi, Gastone Castellani-Reconstructing networks of pathways via significance analysis of their intersections. BMC Bioinformatics. 2008; 9:S9.
  50. Francesconi M, Remondini D, Neretti N, John M Sedivy, Leon N Cooper, Ettore Verondini, Luciano Milanesi, Gastone Castellani-Reconstructing networks of pathways via significance analysis of their intersections. BMC Bioinformatics. 2008; 9:S9.
  51. Lu C, Niu X, Xiao C, Chen G, Zha Q, Guo H, Jiang M, Lu A-Network-Based Gene Expression Biomarkers for Cold and Heat Patterns of Rheumatoid Arthritis in Traditional Chinese Medicine. Evidence-based Complementary and Alternative Medicine : eCAM. 2012; 2012:203043.
  52. Moyerbrailean GA, Davis GO, Harvey CT, Watza D, Wen X, Regi RP, Luca F-A high- throughput RNA-seq approach to profile transcriptional responses. Scientific Reports. 2015; 5:14976.
  53. Lim CS, Nam HJ, Lee J, Kim D, Choi JE, Kang SJ, Kim S, Kim H, Kwak C, Shim KW, Kim S, Ko HG, Lee RU, Jang EH, Yoo J, Shim J, Islam MA, Lee YS, Lee JH, Baek SH, Kaang BK- PKCα-mediated phosphorylation of LSD1 is required for presynaptic plasticity and hippocampal learning and memory. Scientific Reports. 2017; 7:4912.
  54. Freeman L-A Set of Measures of Centrality Based on Betweenness. Sociometry. 1997; 40:35- 41.
  55. Guimerà R, Amaral LAN-Cartography of complex networks: modules and universal roles. Journal of statistical mechanics (Online). 2005; 2005:1-13.
  56. © 2018 Life Science Informatics Publication All rights reserved Peer review under responsibility of Life Science Informatics Publications 2018 Sept -Oct RJLBPCS 4(5) Page No.12
  57. Yu Q, Plis SM, Erhardt EB, Allen EA, Sui J, Kiehl KA, Pearlson G, Calhoun VD-Modular Organization of Functional Network Connectivity in Healthy Controls and Patients with Schizophrenia during the Resting State. Frontiers in Systems Neuroscience. 2011; 5:103.
  58. Albert R, Jeong H, Barabasi AL-Error and attack tolerance of complex networks. Nature. 2000; 406: 378-82.
  59. Almaas E-Biological impacts and context of network theory. J Exp Biol. 2007; 210:1548-1558.
  60. Albert R, Barabasi A-Statistical mechanics of complex networks. Rev Mod Phys. 2002; 74: 47- 97.
  61. Lehner B, Crombie C, Tischler J, Fortunato A and Fraser AG-Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature genetics. 2006; 38:896-903.
  62. Gentile C L, Nivala A M, Gonzales J C, Pfaffenbach K T, Wang D, Wei Y,Jiang H, .
  63. Orlicky D J, Petersen D R, Pagliassotti M J, and MacleanK N -Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. Am J Physiol Regul Integr Comp Physiol. 2011; 301(6): R1710-R1722.
  64. Kishimoto T, Kokura K, Nakadai T, Miyazawa Y, Wakamatsu T, Makino Y, Nakamura T, Hara E, Oda K, Muramatsu M, Tamura T-Overexpression of cysteine sulfinic acid decarboxylase stimulated by hepatocarcinogenesis results in autoantibody production in rats. Cancer Res. 1996; 56:5230-5237.
  65. Inlay MA, Bhattacharya D, Sahoo D, Serwold T, Seita J, Karsunky H, Plevritis SK, Dill DL, Weissman IL-Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev. 2009; 23: 2376-2381.
  66. Guillén N, Navarro MA, Arnal C, Noone E, Arbonés-Mainar JM, Acín S, Surra JC, Muniesa P, Roche HM, Osada J-Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver. Physiol Genomics. 2009; 37:187-98.
  67. Kil DY, Vester Boler BM, Apanavicius CJ, Schook LB, Swanson KS-Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue. PLoS ONE. 2010; 5: e13319.
  68. Giller K, Huebbe P, Doering F, Pallauf K, Rimbach G-Major urinary protein 5, a scent communication protein, is regulated by dietary restriction and subsequent re-feeding in mice. Proceedings of the Royal Society B: Biological Sciences. 2013; 280:20130101.