Characterizing interstellar filaments withHerschelin IC 5146 (original) (raw)

From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey

Astronomy and Astrophysics, 2010

We summarize the first results from the Gould belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 µm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ∼ 350 and 500 prestellar cores and ∼ 45-60 Class 0 protostars can be identified in the Aquila field, while ∼ 300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

Hierarchical structure of the interstellar molecular clouds and star formation

Open Astronomy, 2017

Properties of the hierarchical structures of interstellar molecular clouds are discussed. Particular attention is paid to the statistical correlations between velocity dispersion and size, and between the magnetic field strength and gas density. We investigate the formation of some hierarchical structures with the help of numerical MHD simulations using the ENLIL code. The simulations show that the interstellar molecular filaments with parallel magnetic field and molecular cores can form via the collapse and fragmentation of cylindrical molecular clouds. The parallel magnetic field halts the radial collapse of the cylindrical cloud maintaining its nearly constant radius ∼0.1 pc. The observed filaments with perpendicular magnetic field can form as a result of the magnetostatic contraction of oblate molecular clouds under the action of Alfvén and MHD turbulence. The theoretical density profiles are fitted with the Plummer-like function and agree with observed profiles of the filaments in Gould's Belt. The characteristics of molecular cloud cores found in our simulations are in agreement with observations.

Herschel investigation of cores and filamentary structures in the Perseus molecular cloud

Research in Astronomy and Astrophysics, 2022

Cores and filamentary structures are the prime birthplaces of stars, and play key roles in the process of star formation. Latest advances in the methods of multi-scale source and filament extraction, and in making high-resolution column density map from Herschel multi-wavelength observations enable us to detect the filamentary network structures in highly complex molecular cloud environments. The statistics for physical parameters shows that core mass strongly correlates with core dust temperature, and M/L strongly correlates with M/T , which is in line with the prediction of the blackbody radiation, and can be used to trace evolutionary sequence from unbound starless cores to robust prestellar cores. Crest column densities of the filamentary structures are clearly related with mass per unit length (Mline ), but are uncorrelated by three orders ranging from ∼ 1020 to ∼ 1022 cm -2 with widths. Full width at half maximum (FWHM) have a median value of 0.15 pc, which is consistent with ...

Two mass distributions in the L 1641 molecular clouds: The Herschel connection of dense cores and filaments in Orion A

2013

We present the Herschel Gould Belt survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of dense sources are proto-or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M and drives the shape of the CMF at higher masses, which we fit with a power law of the form dN /dlogM ∝ M −1.4±0.4 . The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M and leads to a flattening of the CMF at masses lower than ∼4 M . We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

Clouds, filaments, and protostars: The Herschel Hi-GAL Milky Way

Astronomy & Astrophysics, 2010

We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key-project that will map the inner Galactic Plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2{\deg} x 2{\deg} tiles approximately centered at l=30{\deg} and l=59{\deg}. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call 'cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A_V of about 1 is exceeded for the regions in the l=59{\deg} field; a A_V value between 5 and 10 is found for the l=30{\deg} field, likely due to the relatively larger distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.

Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel

Astronomy and Astrophysics, 2010

Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multiscale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of ∼35 in Aquila and ∼59 in Polaris (∼9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.

From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation

Protostars and Planets VI, 2014

Recent studies of the nearest star-forming clouds of the Galaxy at submillimeter wavelengths with the Herschel Space Observatory have provided us with unprecedented images of the initial and boundary conditions of the star formation process. The Herschel results emphasize the role of interstellar filaments in the star formation process and connect remarkably well with nearly a decade's worth of numerical simulations and theory that have consistently shown that the ISM should be highly filamentary on all scales and star formation is intimately related to self-gravitating filaments. In this review, we trace how the apparent complexity of cloud structure and star formation is governed by relatively simple universal processes -from filamentary clumps to galactic scales. We emphasize two crucial and complementary aspects: (i) the key observational results obtained with Herschel over the past three years, along with relevant new results obtained from the ground on the kinematics of interstellar structures, and (ii) the key existing theoretical models and the many numerical simulations of interstellar cloud structure and star formation. We then synthesize a comprehensive physical picture that arises from the confrontation of these observations and simulations.

Comparison of Prestellar Core Elongations and Large-Scale Molecular Cloud Structures in the Lupus I Region

The Astrophysical Journal, 2014

Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics-including secondary filaments that often run orthogonally to the primary filament-and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

Characterising the high-mass star forming filament G351.776–0.527 with Herschel and APEX dust continuum and gas observations

Astronomy & Astrophysics, 2019

G351.776-0.527 is among the most massive, closest, and youngest filaments in the inner Galactic plane and therefore it is an ideal laboratory to study the kinematics of dense gas and mass replenishment on a large scale. In this paper, we present far-infrared and submillimetre wavelength continuum observations combined with spectroscopic C18O (2–1) data of the entire region to study its temperature, mass distribution, and kinematics. The structure is composed of a main elongated region with an aspect ratio of ~23, which is associated with a network of filamentary structures. The main filament has a remarkably constant width of 0.2 pc. The total mass of the network (including the main filament) is ≥2600M⊙, while we estimate a mass of ~2000M⊙ for the main structure. Therefore, the network harbours a large reservoir of gas and dust that could still be accreted onto the main structure. From the analysis of the gas kinematics, we detect two velocity components in the northern part of the ...

Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS

Astronomy & Astrophysics, 2016

Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ∼0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims. In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 µm. Methods. We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 µm with Herschel/HOBYS data at 70-500 µm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8 or <0.07 pc at d ∼ 1.7 kpc. Results. Our study confirms that this filament is a very dense, massive linear structure with a line mass ranging from ∼500 M /pc to ∼2000 M /pc over nearly 10 pc. It also demonstrates for the first time that its inner width remains as narrow as W ∼ 0.15 ± 0.05 pc all along the filament length, within a factor of <2 of the characteristic 0.1 pc value found with Herschel for lower-mass filaments in the Gould Belt. Conclusions. While it is not completely clear whether the NGC 6334 filament will form massive stars in the future, it is two to three orders of magnitude denser than the majority of filaments observed in Gould Belt clouds, and has a very similar inner width. This points to a common physical mechanism for setting the filament width and suggests that some important structural properties of nearby clouds also hold in high-mass star-forming regions.