Extracellular Matrix Biomimetic Hydrogels, Encapsulated with Stromal Cell-Derived Factor 1, Improve the Composition of Foetal Tissue Grafts in a Rodent Model of Parkinson’s Disease (original) (raw)
Related papers
Cell transplantation, 2017
Transplantation of fetal ventral mesencephalic (VM) neurons for Parkinson's disease (PD) is limited by poor survival and suboptimal integration of grafted tissue into the host brain. In a 6-OHDA rat model of PD we investigated the feasibility of simultaneous transplantation of rat fetal VM tissue and polymer-encapsulated C2C12 myoblasts genetically modified to produce glial cell line-derived neurotrophic factor or mocktransfected myoblasts on graft function. Amphetamine-induced rotations were assessed prior and 2, 4, 6 and 9 weeks post-transplantation. We found that rats grafted with VM transplants and GDNF-capsules showed a significant functional recovery already 4 weeks after implantation. In contrast, rats from the VM transplant and mock-capsule group did not improve at any time point analyzed. Moreover, we detected a significantly higher number of tyrosine hydroxylase-immunoreactive (TH-ir) cells per graft (2 fold), a tendency for a larger graft volume and an overall higher ...
Experimental Neurology, 2000
One of the drawbacks with fetal ventral mesencephalic (VM) grafts in Parkinson's disease is the limited outgrowth into the host striatum. In order to enhance graft outgrowth, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were administered by implantation of bioactive rods to the lateral part of the striatum to support grafted fetal VM implanted to the medial portion of the striatum. The polymer-based bioactive rods allow for a local secretion of neurotrophic factors over a time period of approximately 2 weeks. Moreover, glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor-1 (TGF1) were administered using the same technique. Concomitant administration of GDNF and TGF1 was achieved by insertion of one GDNF and one TGF1 rod. This was performed to investigate possible additive effects between GDNF and TGF1. Rotational behavior, outgrowth from and nerve fiber density within the VM graft, and the number of THpositive cells were studied. Functional compensation by reduction of rotational behavior was significantly enhanced in animals carrying bFGF and GDNF rods in comparison with animals carrying only VM graft. EGF and bFGF significantly increased the innervation density. Moreover, the nerve fiber density within the grafts was significantly enhanced by bFGF. Cell counts showed that a significantly higher number of TH-positive neurons was found in grafts treated with bFGF than that found in GDNF-treated grafts. An additive effect of TGF1 and GDNF was not detectable. These results suggest that bioactive rods is a useful tool to deliver neurotrophic factors into the brain, and since bFGF was a potent factor concerning both functional, immunohistochemical and cell survival results, it might be of interest to use bFGFsecreting rods for enhancing the overall outcome of VM grafts into patients suffering from Parkinson's disease.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to increase the survival of dopamine neu-rons in a variety of in vitro and in vivo model systems. Therefore, it constitutes an important therapeutic protein with the potential to ameliorate dopamine neuronal de-generation in Parkinson's disease or to support dopa-mine neuronal replacement strategies. However, bio-physical and practical considerations present obstacles for the direct delivery of the GDNF protein to CNS neu-rons. Here we show that rodent neural precursor cells isolated and expanded in culture as neurospheres (NS) can be genetically modified to express green fluorescent protein (GFP) or to release GDNF using lentiviral constructs. GDNF-NS increased the fibre outgrowth of primary embryonic dopamine neurons in cocultures, showing that the protein was released in biologically significant quantities. Furthermore, after transplantation into the 6-hydroxydopamine-lesioned rat striatum, GDNF-NS significantly increased the survival of cografted primary dopamine neurons. However, this was not reflected in behavioural recovery in these animals. We found that, by 6 weeks, few cells expressed GDNF or GFP, suggesting either that transgene expression was down-regulated over time or that the cells died. This may explain the initial effects on dopamine neuronal survival within the graft but the lack of long-term effect on subsequent fibre outgrowth and behaviour. Providing sustained levels of neural precursor-mediated transgene expression can be achieved following transplantation in the future; this approach may prove beneficial as an alternative therapeutic strategy in the cell-based management of Parkinson's disease.
Molecular & cellular proteomics : MCP, 2018
Despite the progress in safety and efficacy of cell replacement therapy with pluripotent stem cells (PSCs), the presence of residual undifferentiated stem cells or proliferating neural progenitor cells (NPCs) with rostral identity remains a major challenge. Here we report the generation of a LIM homeobox transcription factor 1 alpha (LMX1A) knock-in GFP reporter human embryonic stem cell (hESC) line that marks the early dopaminergic progenitors during neural differentiation to find reliable membrane protein markers for isolation of midbrain dopaminergic neurons. Purified GFP positive cells in vitro exhibited expression of mRNA and proteins that characterized and matched the midbrain dopaminergic identity. Further quantitative proteomics analysis of enriched LMX1A+ cells identified several membrane-associated proteins including polysialylated embryonic form of neural cell adhesion molecule (PSA-NCAM) and contactin 2 (CNTN2), enabling prospective isolation of LMX1A+ progenitor cells. ...
2021
Parkinson’s disease (PD) is characterized by the progressive loss of midbrain dopaminergic neurons (DaNs) of the substantia nigra pars compacta and the decrease of dopamine in the brain. Grafting DaN differentiated from embryonic stem cells (ESCs) has been proposed as an alternative therapy for current pharmacological treatments. Intrastriatal grafting of such DaNs differentiated from mouse or human ESCs improves motor performance, restores DA release, and suppresses dopamine receptor super-sensitivity. However, a low percentage of grafted neurons survive in the brain. Glial cell line-derived neurotrophic factor (GDNF) is a strong survival factor for DaNs. GDNF has proved to be neurotrophic for DaNs in vitro and in vivo, and induces axonal sprouting and maturation. Here, we engineered mouse ESCs to constitutively produce human GDNF, to analyze DaN differentiation and the possible neuroprotection by transgenic GDNF after toxic challenges in vitro, or after grafting differentiated DaN...
Brain, 2010
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease, and the most common movement disorder. Drug treatment and deep brain stimulation can ameliorate symptoms, but the progressive degeneration of dopaminergic neurons in the substantia nigra eventually leads to severe motor dysfunction. The transplantation of stem cells has emerged as a promising approach to replace lost neurons in order to restore dopamine levels in the striatum and reactivate functional circuits. We have generated substrate-adherent embryonic stem cell-derived neural aggregates overexpressing the neural cell adhesion molecule L1, because it has shown beneficial functions after central nervous system injury. L1 enhances neurite outgrowth and neuronal migration, differentiation and survival as well as myelination. In a previous study, L1 was shown to enhance functional recovery in a mouse model of Huntington's disease. In another study, a new differentiation protocol for murine embryonic stem cells was established allowing the transplantation of stem cell-derived neural aggregates consisting of differentiated neurons and radial glial cells into the lesioned brain. In the present study, this embryonic stem cell line was engineered to overexpress L1 constitutively at all stages of differentiation and used to generate stem cell-derived neural aggregates. These were monitored in their effects on stem cell survival and differentiation, rescue of endogenous dopaminergic neurons and ability to influence functional recovery after transplantation in an animal model of Parkinson's disease. Female C57BL/6J mice (2 months old) were treated with the mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intraperitoneally to deplete dopaminergic neurons selectively, followed by unilateral transplantation of stem cell-derived neural aggregates into the striatum. Mice grafted with L1 overexpressing stem cell-derived neural aggregates showed better functional recovery when compared to mice transplanted with wild-type stem cell-derived neural aggregates and vehicle-injected mice. Morphological analysis revealed increased numbers and migration of surviving transplanted cells, as well as increased numbers of dopaminergic neurons, leading to enhanced levels of dopamine in the striatum ipsilateral to the grafted side in L1 overexpressing stem cell-derived neural aggregates, when compared to wild-type stem cell-derived neural aggregates. The striatal levels of gamma-aminobutyric acid were not affected by L1 overexpressing stem cell-derived neural aggregates. Furthermore, L1 overexpressing, but not wild-type stem cell-derived neural aggregates, enhanced survival of endogenous host dopaminergic
Parkinsonism & Related Disorders, 2001
A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigrostriatal system, cannot be reliably obtained or generated in suf®cient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo-or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in suf®cient quantities for the unmet cell transplantation need for patients with PD and related disorders. q