Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin (original) (raw)

Proteolipid protein–deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling

Journal of Cell Biology, 2016

Hereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P0 (P0-CNS mice). Mitochondrial pathology and degeneration were prominent in juxtaparanodal axoplasm at 1 mo of age. In wild-type (WT) optic nerve axons, 25% of mitochondria–SER associations occurred on extensions of the mitochondrial outer membrane. Mitochondria–SER associations were reduced by 86% in 1-mo-old P0-CNS juxtaparanodal axoplasm. 1-mo-old P0-CNS optic nerves were more sensitive to oxygen-glucose deprivation and contained less adenosine triphosphate (ATP) than WT nerves. MT pathology and paranodal ax...

Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia

Journal of Cell Biology, 2004

Oligodendrocytes are critical for the development of the plasma membrane and cytoskeleton of the axon. In this paper, we show that fast axonal transport is also dependent on the oligodendrocyte. Using a mouse model of hereditary spastic paraplegia type 2 due to a null mutation of the myelin Plp gene, we find a progressive impairment in fast retrograde and anterograde transport. Increased levels of retrograde motor protein subunits are associated with accumulation of membranous organelles distal to nodal complexes. Using cell transplantation, we show categorically that the axonal phenotype is related to the presence of the overlying Plp null myelin. Our data demonstrate a novel role for oligodendrocytes in the local regulation of axonal function and have implications for the axonal loss associated with secondary progressive multiple sclerosis.

Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance

Aging cell, 2017

Sirtuin 2 (SIRT2) is a member of a family of NAD(+) -dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle-aged, 13-month-old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2(-/-) mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metab...

Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance

Proceedings of The National Academy of Sciences, 2006

Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder that is characterized by retrograde axonal degeneration that primarily affects long spinal neurons. The disease is clinically heterogeneous, and there are >20 genetic loci identified. Here, we show a physical interaction between spastin and atlastin, two autosomal dominant HSP gene products. Spastin encodes a microtubule (MT)-severing AAA ATPase (ATPase associated with various activities), and atlastin encodes a Golgi-localized integral membrane protein GTPase. Atlastin does not regulate the enzymatic activity of spastin. We also identified a clinical mutation in atlastin outside of the GTPase domain that prevents interaction with spastin in cells. Therefore, we hypothesize that failure of appropriate interaction between these two HSP gene products may be pathogenetically relevant. These data indicate that at least a subset of HSP genes may define a cellular biological pathway that is important in axonal maintenance.

Patients lacking the major CNS myelin protein, proteolipid protein 1, develop …

Brain, 2002

Axonal degeneration contributes to clinical disability in the acquired demyelinating disease multiple sclerosis. Axonal degeneration occurs during acute attacks, associated with in¯ammation, and during the chronic progressive phase of the disease in which in¯ammation is not prominent. To explore the importance of interactions between oligodendrocytes and axons in the CNS, we analysed the brains of rodents and humans with a null mutation in the gene encoding the major CNS myelin protein, proteolipid protein (PLP1, previously PLP). Histological analyses of the CNS of Plp1 null mice and of autopsy material from patients with null PLP1 mutations were performed to evaluate axonal and myelin integrity. In vivo proton magnetic resonance spectroscopy (MRS) of PLP1 null patients was conducted to measure levels of N-acetyl aspartate (NAA), a marker of axonal integrity. Length-dependent axonal degeneration without demyelination was identi®ed in the CNS of Plp1 null mice. Proton MRS of PLP1-de®cient patients showed reduced NAA levels, consistent with axonal loss. Analysis of patients' brain tissue also demonstrated a lengthdependent pattern of axonal loss without signi®cant demyelination. Therefore, axonal degeneration occurs in humans as well as mice lacking the major myelin protein PLP1. This degeneration is length-dependent, similar to that found in the PNS of patients with the inherited demyelinating neuropathy, CMT1A, but is not associated with signi®cant demyelination. Disruption of PLP1mediated axonal±glial interactions thus probably causes this axonal degeneration. A similar mechanism may be responsible for axonal degeneration and clinical disability that occur in patients with multiple sclerosis.

Axonal Swellings and Degeneration in Mice Lacking the Major Proteolipid of Myelin

Science, 1998

Glial cells produce myelin and contribute to axonal morphology in the nervous system. Two myelin membrane proteolipids, PLP and DM20, were shown to be essential for the integrity of myelinated axons. In the absence of PLP-DM20, mice assembled compact myelin sheaths but subsequently developed widespread axonal swellings and degeneration, associated predominantly with small-caliber nerve fibers. Similar swellings were absent in dysmyelinated shiverer mice, which lack myelin basic protein (MBP), but recurred in MBP*PLP double mutants. Thus, fiber degeneration, which was probably secondary to impaired axonal transport, could indicate that myelinated axons require local oligodendroglial support.

Overexpression of SIRT1 Protein in Neurons Protects against Experimental Autoimmune Encephalomyelitis through Activation of Multiple SIRT1 Targets

The Journal of Immunology, 2013

Treatment of experimental autoimmune encephalomyelitis (EAE) with resveratrol, an activator of sirtuin 1 (SIRT1), reduces disease severity. This suggested that activators of SIRT1, a highly conserved NAD-dependent protein deacetylase, might have immunemodulating or neuroprotective therapeutic effects in EAE. Previously, we showed that SIRT1 expression increases in EAE, suggesting that it is an adaptive response. In this study, we investigated the potential function of SIRT1 in regulating EAE using SIRT1-overexpressing mice. The current studies examine potential neuroprotective and immunomodulatory effects of SIRT1 overexpression in chronic EAE induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein peptide 35-55. SIRT1 suppressed EAE clinical symptoms compared with wild-type EAE mice and prevented or altered the phenotype of inflammation in spinal cords; as a result, demyelination and axonal injury were reduced. Significant neuroprotective effects were observed, with fewer apoptotic cells found in the spinal cords of SIRT1-overexpressing EAE mice associated with increased brainderived neurotrophic factor and NAD levels. Earlier, we showed that brain-derived neurotrophic factor and NAD play crucial neuroprotective roles in EAE. These results suggest that SIRT1 reduces neuronal loss in this chronic demyelinating disease model and that this is associated with a reduction in inflammation.

Deletion of SIRPα (signal regulatory protein-α) promotes phagocytic clearance of myelin debris in Wallerian degeneration, axon regeneration, and recovery from nerve injury

Journal of Neuroinflammation, 2019

Background Recovery of function from traumatic nerve injury depends on the ability of severed axons to grow/regenerate back to their target tissues. This is achieved by successfully crossing the lesion site where physical impact severed axons, determined by the type of trauma, followed by successfully growing throughout the Wallerian degenerating nerve segment located distal to and beyond the lesion site, determined by the nature of Wallerian degeneration. The protracted removal of myelin debris in Wallerian degeneration, which leads residual myelin debris to slow down axon growth, impedes recovery of function. We focused in this study on mechanism(s) that delay the removal of myelin debris in Wallerian degeneration and so impede recovery. Previously, we showed that myelin debris inhibited its own phagocytosis in primary cultured macrophages and microglia as CD47 on myelin ligated SIRPα (signal regulatory protein-α) on phagocytes, and sequentially, SIRPα generated “don’t eat me” sig...