Generation of topologically diverse acoustic vortex beams with same divergence angle using discrete active helical arrays (original) (raw)

Abstract

Here, we present a class of metamaterial-based acoustic vortex generators which are both geometrically simple and broadly tunable. The aperture overcomes the significant limitations of both active phasing systems and existing passive coded apertures. The metamaterial approach generates topologically diverse acoustic vortex waves motivated by recent advances in leaky wave antennas by wrapping the antenna back upon itself to produce an acoustic vortex wave antenna. We demonstrate both experimentally and analytically that this single analog structure is capable of creating multiple orthogonal orbital angular momentum modes using only a single transducer. The metamaterial design makes the aperture compact, with a diameter nearly equal to the excitation wavelength and can thus be easily integrated into high-density systems. Applications range from acoustic communications for high bit-rate multiplexing to biomedical devices such as microfluidic mixers.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (22)

  1. B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 106, 3313 (1999).
  2. A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and S. Subramanian, Nat. Commun. 6, 8661 (2015).
  3. A. Riaud, J.-L. Thomas, E. Charron, A. Bussonniere, O. B. Matar, and M. Baudoin, Phys. Rev. App. 4, 034004 (2015).
  4. E. Karimi, S. A. Shultz, I. DeLeon, H. Qassim, J. Upham, and R. W. Boyd, Light Sci. Appl. 3, e167 (2014).
  5. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192 (2011).
  6. A. Malr, A. Vazlri, G. Wehls, and A. Zellinger, Nature 412, 313 (2001).
  7. G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. 3, 305 (2007).
  8. L. Chen, J. Lei, and J. Romero, Light Sci. Appl. 3, e513 (2014).
  9. D. G. Grier, Nature 424, 810 (2003).
  10. Z. Y. Hong, J. Zhang, and B. W. Drinkwater, Phys. Rev. Lett. 114, 214301 (2015).
  11. X. Cai, J. Wang, M. J. Strain, M. Johsnon-Morris, J. Zhu, M. Sorel, J. L. O'Brien, M. G. Thompson, and S. Yu, Science 338, 363 (2012).
  12. M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez- Garcia, J. L. O'Brien, M. G. Thompson, M. Sorel, and S. Yu, Nat. Commun. 5, 4856 (2014).
  13. Z. Hong, J. Zhang, and B. W. Drinkwater, EPL 110, 14002 (2015).
  14. J. Wang, W. Zhang, Q. Qi, S. Zheng, and L. Chen, Sci. Rep. 5, 15826 (2015).
  15. C. J. Naify, T. P. Martin, M. Nicholas, D. C. Calvo, and G. J. Orris, Appl. Phys. Lett. 102, 203508 (2013).
  16. C. J. Naify, M. D. Guild, C. A. Rohde, D. C. Calvo, and G. J. Orris, Appl. Phys. Lett. 107, 133505 (2015).
  17. L. Liu, C. Caloz, and T. Itoh, Electron. Lett. 38, 1414 (2002).
  18. M. K. Chin and S. T. Ho, J. Lightwave Technol. 16, 1433 (1998).
  19. See supplementary material at http://dx.doi.org/10.1063/1.4953075 for details about the vortex wave antenna.
  20. M. V. Vasnetsov, L. V. Bastisty, and M. Soskin, Proc. SPIE 3487, 29 (1998).
  21. M. V. Berry, J. Opt. A: Pure Appl. Opt. 6, 259 (2004).
  22. X. Ding, S.-C. S. Lin, B. Kiraly, H. Yue, S. Li, I.-K. Chiang, J. Shi, S. J. Benevic, and T. J. Huang, Proc. Natl. Acad. Sci. U. S. A. 109, 11105 (2012).