Therapeutic nanomedicine: Polymeric nanosystems for drug and gene delivery (original) (raw)
Abstract
Therapeutic nanomedicine introduction Despite remarkable progress in the past century, acute and chronic diseases such as bacterial and viral infections, cancer, cardiovascular diseases, and debilitating CNS diseases continue to take a significant toll around the world. Various types of drug and gene therapy strategies are currently employed for the treatment of diseases based on differences between the normal and pathological tissue. Those differences can be subtle and in remote areas of the body at the organ, tissue, cell, or sub-cellular levels (1-5). As pathological knowledge is leading to the molecular distinction between normal and abnormal tissue, it is predicted that more therapeutic targets will emerge at the cellular, sub-cellular, and at molecular levels (6). In the case of cancer, for instance, the angiogenic process that leads to recruitment of a blood supply from surrounding vessels is extremely important for growth and spreading of cancer cells, a process known as metastasis, to other parts of the body (7). Metastasis is the cause of more than 80% of cancer-related deaths (8). In addition, as the solid tumor begins to grow, the blood supply is confined largely to the periphery and does not permeate to the interior of the mass. Lack of blood supply to the core of a tumor results in
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (79)
- Emerich, D. F. and Thanos, C. G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng, 23: 171- 184, 2006.
- Evans, C. H. Gene therapy: what have we accomplished and where do we go from here? J rheumatol Suppl, 72: 17-20, 2005.
- Groneberg, D. A., Giersig, M., Welte, T., and Pison, u. Nanoparticle-based diagnosis and therapy. Curr Drug Targets, 7: 643-648, 2006.
- Kim, C. K., Haider, K. H., and Lim, S. J. Gene medicine : a new field of molecular medicine. Arch Pharm res, 24: 1-15, 2001.
- Shoji, Y., Shimada, J., and Mizushima, Y. Drug delivery system to control infectious diseases. Curr Pharm Des, 8: 455-465, 2002.
- Navalakhe, r. M. and Nandedkar, T. D. Application of nanotechnology in biomedicine. Indian J Exp Biol, 45: 160-165, 2007.
- Folkman, J. The role of angiogenesis in tumor growth. Semin Cancer Biol, 3: 65-71, 1992.
- Fokas, E., Engenhart-Cabillic, r., Daniilidis, K., rose, F., and An, H. X. Metastasis: the seed and soil theory gains identity. Cancer Metastasis rev, 26: 705-715, 2007.
- Jain, r. K. Delivery of molecular and cellular medicine to solid tumors. J Control release, 53: 49-67, 1998.
- Jain, r. K. Transport of molecules, particles, and cells in solid tumors. Annu rev Biomed Eng, 1: 241-263, 1999.
- Di Nicolantonio F, Mercer SJ, Knight LA, Ga- briel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgins B, Lamont A, Guilliford T, Hurren J, Yiangou C, and Cree IA Cancer cell adaptation to chemotherapy. BMC Cancer, 5: 78, 2005.
- Galmarini CM and Galmarini FC Multid- rug resistance in cancer therapy: role of the microenvironment. Curr Opin Invest Drug, 4: 1415-1421, 2003.
- Gottesman MM, Fojo T, and Bates SE Multid- rug resistance in cancer: role of ATP-dependent transporters. Nat rev Cancer, 2: 48-58, 2002.
- Gosselin, M. A., Guo, W., and Lee, r. J. Efficient gene transfer using reversibly cross- linked low molecular weight polyethylenimine. Bioconjug Chem, 12: 989-994, 2001.
- Hartman, Z. C., Appledorn, D. M., and Amal- fitano, A. Adenovirus vector induced innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applica- tions. Virus res, 132: 1-14, 2008.
- Bhavsar, M. D. and Amiji, M. M. Polymeric nano-and microparticle technologies for oral gene delivery. Expert Opin Drug Deliv, 4: 197- 213, 2007.
- Kommareddy, S. and Amiji, M. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine, 3: 32-42, 2007.
- Kodama, K., Katayama, Y., Shoji, Y., and Na- kashima, H. The features and shortcomings for gene delivery of current non-viral carriers. Curr Med Chem, 13: 2155-2161, 2006.
- Fenske, D. B. and Cullis, P. r. Liposomal nanomedicines. Expert Opin Drug Deliv, 5: 25- 44, 2008.
- Patil, S. D., rhodes, D. G., and Burgess, D. J. DNA-based therapeutics and DNA delivery systems: a comprehensive review. Aaps J, 7: E61-77, 2005.
- Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M. A review of stimuli-responsive nano- carriers for drug and gene delivery. J Control release, 126: 187-204, 2008.
- Devalapally, H., Chakilam, A., and Amiji, M. M. role of nanotechnology in pharmaceutical product development. J Pharm Sci, 96: 2547- 2565, 2007.
- van Vlerken, L. E. and Amiji, M. M. Multi- functional polymeric nanoparticles for tumour- targeted drug delivery. Expert Opin Drug Deliv, 3: 205-216, 2006.
- Akinc, A., Lynn, D. M., Anderson, D. G., and Langer, r. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc, 125: 5316-5323, 2003.
- Vogel, B. M., Cabral, J. T., Eidelman, N., Nara- simhan, B., and Mallapragada, S. K. Parallel syn- thesis and high throughput dissolution testing of biodegradable polyanhydride copolymers. J Comb Chem, 7: 921-928, 2005.
- Gradishar, W. J. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmaco- ther, 7: 1041-1053, 2006.
- Chawla JS and Amiji MM Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm, 249: 127-138, 2002.
- Devalapally H, Shenoy D, Little S, Langer r, and Amiji M Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH- sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother Pharmacol: (epub), 2006.
- Devalapally, H., Duan, Z., Seiden, M. V., and Amiji, M. M. Paclitaxel and ceramide co-admi- nistration in biodegradable polymeric nano- particulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer, 121: 1830-1838, 2007.
- Hejazi, r. and Amiji, M. Chitosan-based gastrointestinal delivery systems. J Control release, 89: 151-165, 2003.
- Kaul, G. and Amiji, M. Long-circulating poly(ethylene glycol)-modified gelatin nanopar- ticles for intracellular delivery. Pharm res, 19: 1061-1067, 2002.
- Kommareddy, S. and Amiji, M. Preparati- on and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem, 16: 1423-1432, 2005.
- Nsereko, S. and Amiji, M. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials, 23: 2723-2731, 2002.
- Shenoy D, Little S, Langer r, and Amiji M Poly(ethylene oxide)-modified poly(beta amino ester) nanoparticles as a pH sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localiza- tion studies. Pharm res, 22: 2107-2114, 2005. 35.Shenoy, D., Little, S., Langer, r., and Amiji, M. Poly(ethylene oxide)-modified poly(beta- amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydro- phobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm res, 22: 2107-2114, 2005.
- Shenoy, D. B. and Amiji, M. M. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) na- noparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm, 293: 261-270, 2005. 37.van Vlerken, L. E., Duan, Z., Seiden, M. V., and Amiji, M. M. Modulation of intracellular ceramide using polymeric nanoparticles to over- come multidrug resistance in cancer. Cancer res, 67: 4843-4850, 2007.
- Ferrari M Cancer nanotechnology: oppor- tunities and challanges. Nat rev Cancer, 5: 161-171, 2005.
- van Vlerken, L. E., Vyas, T. K., and Amiji, M. M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm res, 24: 1405-1414, 2007.
- J. Jun-Fang, T. Sawa, and Maeda, H. Factors and Mechanism of "EPr" Effect and the En- hanced Antitumor Effects of Macromolecular Drugs Including SMANCS In: Polymer Drugs in the Clinical Stage, Vol. 519, pp. 29-49. Springer Netherlands, 2006.
- Maeda, H. The enhanced permeability and retention (EPr) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme regul, 41: 189-207, 2001.
- Greco, F. and Vicent, M. J. Polymer-drug con- jugates: current status and future trends. Front Biosci, 13: 2744-2756, 2008.
- Seymour, L. W. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit rev Ther Drug Carrier Syst, 9: 135-187, 1992.
- Bradley G, Juranka PF, and Ling V Mecha- nism of multidrug resitance. Biochem Biophys Acta, 948: 87-128, 1988.
- Desoize B and Jardillier JC Multicellular resi- stance: a paradigm for clinical resistance? Crit rev Oncol Hemat, 36: 193-207, 2000.
- Gulbins E, Jekle A, Ferlinz K, Grassme H, and Lang F Physiology of apoptosis. Am J Physiol renal Physiol, 279: F605-F615, 2000. 47.Kellen JA The reversal of multidrug resi- stance: an update. J Exp Ther Oncol, 3: 5-13, 2003.
- Martin, C., Berridge, G., Mistry, P., Higgins, C., Charlton, P., and Callaghan, r. The molecular interaction of the high affinity reversal agent Xr9576 with P-glycoprotein. Br J Pharmacol, 128: 403-411, 1999.
- Mayur, Y. C., Padma, T., Parimala, B. H., Chandramouli, K. H., Jagadeesh, S., Gowda, N.
- M., and Thimmaiah, K. N. Sensitization of multi- drug resistant (MDr) cancer cells to vinblastine by novel acridones: correlation between anti- calmodulin activity and anti-MDr activity. Med Chem, 2: 63-77, 2006.
- Thon L, Mohlig H, Mathieu S, Lange A, Bulanova E, Winoto-Morbach S, Schutze S, Bul- fone-Paus S, and Adam D Ceramide mediates caspase-independent programmed cell death. FASEB J, 19: 1945-1956, 2005.
- Tilly JL and Kolesnick rN Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochem Biophys Acta, 1585: 135-158, 2002.
- Pushkareva M, Obeid LM, and Hannun YA Ceramide: an endogenous regulator of apopto- sis and growth supression. Immunol Today, 16: 294-297, 1995.
- radin NS Killing tumors by ceramide-in- duced apoptosis: a critique of available drugs. Biochem J, 371: 243-256, 2003.
- reynolds CP, Maurer BJ, and Kolesnick rN Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett, 206: 169-180, 2004.
- Cabot MC, Giuliano AE, Volner A, and Han T-Y Tamoxifen retards glycosphingolipid meta- bolism in human cancer cells. FEBS Lett, 394: 129-131, 1996.
- Liu Y-Y, Han T-Y, Giullano AE, and Cabot MC Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J, 15: 719-730, 2001.
- Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, and Cabot MC Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer res, 18: 475-480, 1998.
- Sietsma H, Veldman rJ, and Kok JW The involvement of sphingolipids in multidrug resi- stance. J Membrane Biol, 181: 153-162, 2001.
- Morjani H, Aouali N, Belhoussine r, Veldman rJ, Levade T, and Manfait M Elevation of gluco- sylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer, 94: 157-165, 2001.
- Pauwels, E. K., Erba, P., Mariani, G., and Gomes, C. M. Multidrug resistance in cancer: its mechanism and its modulation. Drug News Perspect, 20: 371-377, 2007.
- Wirth, T. and Yla-Herttuala, S. Gene tech- nology based therapies in the brain. Adv Tech Stand Neurosurg, 31: 3-32, 2006.
- Doyle, S. r. and Chan, C. K. Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyargi- nine PTD influences exogenous gene expression within live COS-7 cells. Genet Vaccines Ther, 5: 11, 2007.
- Bloquel, C., Bourges, J. L., Touchard, E., Berdugo, M., BenEzra, D., and Behar-Cohen, F. Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv rev, 58: 1224-1242, 2006.
- Kaul, G. and Amiji, M. Biodistribution and targeting potential of poly(ethylene glycol)- modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target, 12: 585- 591, 2004.
- Kaul, G. and Amiji, M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo stu- dies. Pharm res, 22: 951-961, 2005.
- Kaul, G. and Amiji, M. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanopar- ticles. J Pharm Sci, 94: 184-198, 2005.
- Kommareddy, S. and Amiji, M. Antiangio- genic gene therapy with systemically admi- nistered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther, 14: 488-498, 2007.
- Kommareddy, S. and Amiji, M. Biodistributi- on and pharmacokinetic analysis of long-circu- lating thiolated gelatin nanoparticles following systemic administration in breast cancer-bea- ring mice. J Pharm Sci, 96: 397-407, 2007.
- Kommareddy, S., Tiwari, S. B., and Amiji, M. M. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer res Treat, 4: 615-625, 2005.
- Ferrara, N., Houck, K., Jakeman, L., and Leung, D. W. Molecular and biological proper- ties of the vascular endothelial growth factor family of proteins. Endocr rev, 13: 18-32, 1992.
- Shibuya, M. role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer res, 67: 281-316, 1995.
- Thomas, K. A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem, 271: 603-606, 1996.
- Millauer, B., Shawver, L. K., Plate, K. H., risau, W., and ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 367: 576-579, 1994.
- Kendall, r. L. and Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci u S A, 90: 10705-10709, 1993.
- Kendall, r. L., Wang, G., and Thomas, K. A. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDr. Biochem Biophys res Commun, 226: 324-328, 1996.
- Bhavsar, M. D. and Amiji, M. M. Oral IL-10 gene delivery in a microsphere-based formu- lation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther, 2008.
- Sheu, E., rothman, S., German, M., Wang, X., Finer, M., and McMahon, B. M. The Gene Pill and its therapeutic applications. Curr Opin Mol Ther, 5: 420-427, 2003.
- Zheng, F., Shi, X. W., Yang, G. F., Gong, L. L., Yuan, H. Y., Cui, Y. J., Wang, Y., Du, Y. M., and Li, Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci, 80: 388-396, 2007.
- Lengsfeld, C. S., Manning, M. C., and ran- dolph, T. W. Encapsulating DNA within biode- gradable polymeric microparticles. Curr Pharm Biotechnol, 3: 227-235, 2002.
- O'Hagan, D. T., Singh, M., and ulmer, J. B. Microparticles for the delivery of DNA vaccines. Immunol rev, 199: 191-200, 2004.
- Bhavsar, M. D., Tiwari, S. B., and Amiji, M. M. Formulation optimization for the nanoparti- cles-in-microsphere hybrid oral delivery system using factorial design. J Control release, 110: 422-430, 2006.