A connectivity model for the locomotor network of Caenorhabditis elegans (original) (raw)

A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in Caenorhabditis elegans

Journal of Neuroscience, 2011

The neuronal connectivity dataset of the nematode Caenorhabditis elegans attracts wide attention from computational neuroscientists and experimentalists. However, the dataset is incomplete. The ventral and dorsal nerve cords of a single nematode were reconstructed halfway along the body and the posterior data are missing, leaving 21 of 75 motoneurons of the locomotor network with partial or no connectivity data. Using a new framework for network analysis, the perimotor space, we identified rules of connectivity that allowed us to approximate the missing data by extrapolation. Motoneurons were mapped into perimotor space in which each motoneuron is located according to the muscle cells it innervates. In this framework, a pattern of iterative connections emerges which includes most (0.90) of the connections. We identified a repeating unit consisting of 12 motoneurons and 12 muscle cells. The cell bodies of the motoneurons of such a unit are not necessarily anatomical neighbors and there is no obvious anatomical segmentation. A connectivity model, composed of six repeating units, is a description of the network that is both simplified (modular and without noniterative connections) and more complete (includes the posterior part) than the original dataset. The perimotor framework of observed connectivity and the segmented connectivity model give insights and advance the study of the neuronal infrastructure underlying locomotion in C. elegans. Furthermore, we suggest that the tools used herein may be useful to interpret, simplify, and represent connectivity data of other motor systems.

Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

Journal of Computational Neuroscience, 2008

To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (i) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (ii) existence of some form of neuromuscular (stretch receptor) feedback, (iii) invariance of neuromuscular wavelength, (iv) biphasic dependence of frequency on synaptic signaling, and (v) decrease of frequency with increase of the muscle time constant. Based on (i) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (i) and (ii) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (iii), (iv), and (v), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.

Functional mapping of neurons that control locomotory behavior inCaenorhabditis elegans

Journal of Neurobiology, 2003

One approach to understanding behavior is to define the cellular components of neuronal circuits that control behavior. In the nematode Caenorhabditis elegans, neuronal circuits have been delineated based on patterns of synaptic connectivity derived from ultrastructural analysis. Individual cellular components of these anatomically defined circuits have previously been characterized on the sensory and motor neuron levels. In contrast, interneuron function has only been addressed to a limited extent. We describe here several classes of interneurons (AIY, AIZ, and RIB) that modulate locomotory behavior in C. elegans. Using mutant analysis as well as microsurgical mapping techniques, we found that the AIY neuron class serves to tonically modulate reversal frequency of animals in various sensory environments via the repression of the activity of a bistable switch composed of defined command interneurons. Furthermore, we show that the presentation of defined sensory modalities induces specific alterations in reversal behavior and that the AIY interneuron class mediates this alteration in locomotory behavior. We also found that the AIZ and RIB interneuron classes process odorsensory information in parallel to the AIY interneuron class. AIY, AIZ, and RIB are the first interneurons directly implicated in chemosensory signaling. Our neuronal mapping studies provide the framework for further genetic and functional dissections of neuronal circuits in C. elegans. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 178–197, 2003

The Role of Body Wall Muscles in C. elegans Locomotion

Over the past four decades, one of the simplest nervous systems across the animal kingdom, that of the nematode worm C. elegans, has drawn increasing attention. This system is the subject of an intensive concerted effort to understand the behaviour of an entire living animal, from the bottom up and the top down. C. elegans locomotion, in particular, has been the subject of a number of models, but there is as yet no general agreement about the key (rhythm generating) elements. In this paper we investigate the role of one component of the locomotion subsystem, namely the body wall muscles, with a focus on the role of inter-muscular gap junctions. We construct a detailed electrophysiological model which suggests that these muscles function, to a first approximation, as mere actuators and have no obvious rhythm generating role. Furthermore, we show that within our model inter-muscular coupling is too weak to have a significant electrical effect. These results rule out muscles as key generators of locomotion, pointing instead to neural activity patterns. More specifically, the results imply that the reduced locomotion velocity observed in unc-9 mutants is likely to be due to reduced neuronal rather than inter-muscular coupling.

Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans

eLife

Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons ...

Caenorhabditis elegans body wall muscles are simple actuators Biosystems

Over the past four decades, one of the simplest nervous systems across the animal kingdom, that of the nematode worm C. elegans, has drawn increasing attention. This system is the subject of an intensive concerted effort to understand the behaviour of an entire living animal, from the bottom up and the top down. C. elegans locomotion, in particular, has been the subject of a number of models, but there is as yet no general agreement about the key (rhythm generating) elements. In this paper we investigate the role of one component of the locomotion subsystem, namely the body wall muscles, with a focus on the role of inter-muscular gap junctions. We construct a detailed electrophysiological model which suggests that these muscles function, to a first approximation, as mere actuators and have no obvious rhythm generating role. Furthermore, we show that within our model inter-muscular coupling is too weak to have a significant electrical effect. These results rule out muscles as key generators of locomotion, pointing instead to neural activity patterns. More specifically, the results imply that the reduced locomotion velocity observed in unc-9 mutants is likely to be due to reduced neuronal rather than inter-muscular coupling.

Functionally asymmetric motor neurons coordinate locomotion ofCaenorhabditis elegans

Invertebrate nervous systems are valuable models for fundamental principles of the control of behavior. Ventral nerve cord (VNC) motor neurons inCaenorhabditis elegansrepresent one of the best studied locomotor circuits, with known connectivity and functional information about most of the involved neuron classes. However, for one of those, the AS motor neurons (AS MNs), no physiological data is available. Combining specific expression and selective illumination, we precisely targeted AS MNs by optogenetics and addressed their role in the locomotion circuit. After photostimulation, AS MNs induce currents in post-synaptic body wall muscles (BWMs), exhibiting an initial asymmetry of excitatory output. This may facilitate complex regulatory motifs for adjusting direction during navigation. By behavioral and photo-inhibition experiments, we show that AS MNs contribute to propagation of the antero-posterior body wave during locomotion. By Ca2+-imaging in AS MNs and in their synaptic partn...

Gait Modulation in C. elegans: An Integrated Neuromechanical Model

Frontiers in Computational Neuroscience, 2012

Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts its locomotion in different environments, exhibiting so-called swimming in liquids and crawling on dense gels. Recent experiments have demonstrated that the worm displays the full range of intermediate behaviors when placed in intermediate environments. The continuous nature of this transition strongly suggests that these behaviors all stem from modulation of a single underlying mechanism. We present a model of C. elegans forward locomotion that includes a neuromuscular control system that relies on a sensory feedback mechanism to generate undulations and is integrated with a physical model of the body and environment. We find that the model reproduces the entire swim-crawl transition, as well as locomotion in complex and heterogeneous environments. This is achieved with no modulatory mechanism, except via the proprioceptive response to the physical environment. Manipulations of the model are used to dissect the proposed pattern generation mechanism and its modulation. The model suggests a possible role for GABAergic D-class neurons in forward locomotion and makes a number of experimental predictions, in particular with respect to non-linearities in the model and to symmetry breaking between the neuromuscular systems on the ventral and dorsal sides of the body. have mostly addressed crawling on agar.

Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback

Biological Cybernetics, 2008

This paper presents a simple yet biologicallygrounded model for the neural control of Caenorhabditis elegans forward locomotion. We identify a minimal circuit within the C. elegans ventral cord that is likely to be sufficient to generate and sustain forward locomotion in vivo. This limited subcircuit appears to contain no obvious central pattern generated control. For that subcircuit, we present a model that relies on a chain of oscillators along the body which are driven by local and proximate mechano-sensory input. Computer simulations were used to study the model under a variety of conditions and to test whether it is behaviourally plausible. Within our model, we find that a minimal circuit of AVB interneurons and B-class motoneurons is sufficient to generate and sustain fictive forward locomotion patterns that are robust to significant environmental perturbations. The model predicts speed and amplitude modulation by the AVB command interneurons. An extended model including D-class motoneurons is included for comparison.