Conformation of Aspartate Aminotransferase Isozymes Folding under Different Conditions Probed by Limited Proteolysis (original) (raw)
Related papers
Archives of Biochemistry and Biophysics, 2000
At 30°C, the precursor to mitochondrial aspartate aminotransferase (pmAspAT) cannot fold after synthesis in rabbit reticulocyte lysate (RRL), a model for studying intracellular protein folding. However, it folds rapidly once imported into mitochondria. Guanidinium chloride denatured pmAspAT likewise cannot refold at 30°C in a defined in vitro system. However, it refolds rapidly and in good yield in the presence of the intramitochondrial chaperone homologues GroEL and GroES. In this report, we demonstrate that GroEL and GroES can also facilitate the folding of nascent pmAspAT in reticulocyte lysate under conditions where it otherwise would not. When added alone, GroEL arrests the slow folding of nascent pmAspAT and inhibits import into mitochondria. These effects are significantly reversed by adding GroES. These observations suggest that added GroEL participates in an equilibrium with endogenous chaperones in the cytosol which inhibit folding and promote import competence. Native gel electrophoresis suggests that nascent pmAspAT exists in RRL as a heterogeneous population of partially folded species, some of which bind to added GroEL more readily than others. The GroEL-trapped species appear to be among the productive pmAspAT folding intermediates formed in RRL or they at least appear to equilibrate with these intermediates, since they become import competent after GroESstimulated release from GroEL.
Journal of Biological Chemistry, 2003
The refolding of mitochondrial aspartate aminotransferase (mAAT; EC 2.6.1.1) has been studied following unfolding in 6 M guanidine hydrochloride for different periods of time. Whereas reactivation of equilibriumunfolded mAAT is sigmoidal, reactivation of the short term unfolded protein displays a double exponential behavior consistent with the presence of fast and slow refolding species. The amplitude of the fast phase decreases with increasing unfolding times (k Ϸ 0.75 min ؊1 at 20°C) and becomes undetectable at equilibrium unfolding. According to hydrogen exchange and stoppedflow intrinsic fluorescence data, unfolding of mAAT appears to be complete in less than 10 s, but hydrolysis of the Schiff base linking the coenzyme pyridoxal 5-phosphate (PLP) to the polypeptide is much slower (k Ϸ 0.08 min ؊1). This implies the existence in short term unfolded samples of unfolded species with PLP still attached. However, since the disappearance of the fast refolding phase is about 10-fold faster than the release of PLP, the fast refolding phase does not correspond to folding of the coenzyme-containing molecules. The fast refolding phase disappears more rapidly in the pyridoxamine and apoenzyme forms of mAAT, both of which lack covalently attached cofactor. Thus, bound PLP increases the kinetic stability of the fast refolding unfolding intermediates. Conversion between fast and slow folding forms also takes place in an early folding intermediate. The presence of cyclophilin has no effect on the reactivation of either equilibrium or short term unfolded mAAT. These results suggest that proline isomerization may not be the only factor determining the slow refolding of this cofactor-dependent protein.
Refolding Intermediates of Acid-unfolded Mitochondrial Aspartate Aminotransferase Bind to hsp70
Journal of Biological Chemistry, 1997
The cytosolic (cAAT) and mitochondrial (mAAT) isozymes of eukaryotic aspartate aminotransferase share a high degree of sequence identity and almost identical three-dimensional structure. The rat liver proteins can be refolded and reassembled into active dimers after unfolding at low pH. However, refolding of the mitochondrial form after unfolding at pH 2.0 is arrested in the presence of hsp70, whereas this chaperone does not affect the refolding of the cytosolic isozyme unfolded under similar conditions. To elucidate the nature of the differential interaction between hsp70 and the two transaminase forms, we have characterized their refolding from their acid-unfolded states. The recovery of activity of the cytosolic enzyme is monophasic and can be adequately described by a single first-order reaction. By contrast, two sequential first-order ratelimiting steps can be detected for the refolding and reactivation of the mitochondrial protein. The overall refolding pathway of mAAT includes a very fast collapse to an intermediate with 80% of the secondary structure of the active dimer. This is followed by a slow isomerization to form assembly-competent monomers that rapidly associate to form an inactive dimer and a final structural rearrangement of the dimer to the native conformation. Analysis of the interaction of hsp70 with intermediates along the folding pathway of mAAT shows that the polypeptide loses its ability to bind to the chaperone after it has proceeded through the first isomerization/ fast dimerization steps. Thus it appears that only the first collapsed intermediate states in the folding of mAAT bind hsp70. By contrast a faster refolding of cAAT from this collapsed state could explain, at least in part, the inability of hsp70 to bind this isozyme.
New aspects on the mechanism of GroEL-assisted protein folding
Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2002
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the nonhydrolyzable ATP analogue, (Cr(H 2 O) 4 ) 3þ ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring. ß
Minimal and optimal mechanisms for GroE-mediated protein folding
Proceedings of the National Academy of Sciences, 1998
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat-and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroEmediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high-and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini-and holo-chaperones.
Folding Pathway Mediated by an Intramolecular Chaperone
Proceedings of The National Academy of Sciences, 1993
The N-terminal propeptide of subtilisin, a serine protease, functions as an intramolecular chaperone which is crucial for proper folding of the active enzyme. This nascent N-terminal propeptide is removed after completion of the folding process. Here we present a possible pathway by which intramolecular chaperones mediate protein folding. Using circular dichroism to analyze acid-denatured subtilisin we have identified a folding-competent state which can refold to an active conformation in the absence of the propeptide. Earlier work had shown that guanidine hydrochloridedenatured subtilisin was in a state incapable of folding in absence of its propeptide. Comparison of the foldingincompetent and folding-competent states indicates that refolding is facilitated by the presence of residual structure present only in the folding-competent state. The analysis further indicates that the propeptide is essential for inducing this state. Therefore the folding-competent state may lie on-or be in rapid equilibrium with an intermediate on-the folding pathway of subtilisin. In the absence of the propeptide, formation of such a state-and hence refolding-is extremely slow.
Journal of Molecular Biology, 1995
The N-terminal propeptide of subtilisin, a serine protease, functions as an intramolecular chaperone which is crucial for proper folding of the active enzyme. This nascent N-terminal propeptide is removed after completion of the folding process. Here we present a possible pathway by which intramolecular chaperones mediate protein folding. Using circular dichroism to analyze acid-denatured subtilisin we have identified a folding-competent state which can refold to an active conformation in the absence of the propeptide. Earlier work had shown that guanidine hydrochloridedenatured subtilisin was in a state incapable of folding in absence of its propeptide. Comparison of the foldingincompetent and folding-competent states indicates that refolding is facilitated by the presence of residual structure present only in the folding-competent state. The analysis further indicates that the propeptide is essential for inducing this state. Therefore the folding-competent state may lie on-or be in rapid equilibrium with an intermediate on-the folding pathway of subtilisin. In the absence of the propeptide, formation of such a state-and hence refolding-is extremely slow.