Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems (original) (raw)

A convergence analysis of Generalized Multiscale Finite Element Methods

Juan Galvis

Journal of Computational Physics, 2019

View PDFchevron_right

Multiscale finite element coarse spaces for the application to linear elasticity

H. Andrä

Central European Journal of Mathematics, 2013

View PDFchevron_right

Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs

Q. Le Gia

IMA Journal of Numerical Analysis, 2014

View PDFchevron_right

Finite element approximation of multi-scale elliptic problems using patches of elements

Joël Wagner

Numerische Mathematik, 2005

View PDFchevron_right

Stable multiscale bases and local error estimation for elliptic problems

Wolfgang Dahmen

Applied Numerical Mathematics, 1997

View PDFchevron_right

A multiscale HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces

R. Lazarov

View PDFchevron_right

Finite element approximations in a non-Lipschitz domain: Part II

Gabriel Acosta

Mathematics of Computation, 2011

View PDFchevron_right

Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients

Thomas Hou

Discrete and Continuous Dynamical Systems, 2016

View PDFchevron_right

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

Patrick Henning

Numerische Mathematik, 2009

View PDFchevron_right

Finite element heterogeneous multiscale methods with near optimal computational complexity

Marcus Grote

Multiscale Model. Simul, 2007

View PDFchevron_right

Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation

Xiao-Hui Wu

Communications in Mathematical Sciences, 2004

View PDFchevron_right

A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems

Bernard Haasdonk

Comptes Rendus Mathematique, 2011

View PDFchevron_right

Multiscale Finite Elements for Linear Elasticity: Oscillatory Boundary Conditions

Heiko Andrä

Lecture Notes in Computational Science and Engineering, 2014

View PDFchevron_right

Wavelet Galerkin method in multi-scale homogenization of heterogeneous media

Jiun-shyan Chen

International Journal for Numerical Methods in Engineering, 2006

View PDFchevron_right

Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient∗

Thomas Hou

2015

View PDFchevron_right

Homogenization-Based Mixed Multiscale Finite Elements for Problems with Anisotropy

Todd Arbogast

Multiscale Modeling & Simulation, 2011

View PDFchevron_right

Convergence of a Nonconforming Multiscale Finite Element Method

Xiao-Hui Wu

SIAM Journal on Numerical Analysis, 2000

View PDFchevron_right

Adaptively enriched coarse space for the discontinuous Galerkin multiscale problems

Prof. Dr. Talal Rahman

2017

View PDFchevron_right

Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients

Xiao-Hui Wu, Zhiqiang Cai

Mathematics of Computation, 1999

View PDFchevron_right

Recent developments in the theory of finite element approximations of boundary value problems in nonlinear elasticity

J. Oden

Computer Methods in Applied Mechanics and Engineering, 1979

View PDFchevron_right

Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions

Thomas Hou

Multiscale Modeling & Simulation

View PDFchevron_right

Bounds for quantities of interest and adaptivity in the element-free Galerkin method

Pedro Diez, Yolanda Vidal

International Journal For Numerical Methods in Engineering, 2008

View PDFchevron_right

Hierarchical multiscale finite element method for multi-continuum media

Jun Sur Park

Journal of Computational and Applied Mathematics, 2019

View PDFchevron_right

Multiscale Finite Element Coarse Spaces for the Analysis of Linear Elastic Composites

Heiko Andrä

2012

View PDFchevron_right

Some details of the Galerkin finite element method

Farrukh Mohsen

Applied Mathematical Modelling, 1982

View PDFchevron_right

An Adaptive Multiscale Finite Element Method

Mario Ohlberger

Multiscale Modeling & Simulation, 2014

View PDFchevron_right

On multiscale methods in Petrov–Galerkin formulation

Daniel Elfverson

Numerische Mathematik, 2015

View PDFchevron_right