Faecal Microbiota and Short-Chain Fatty Acid Levels in Faeces from Infants with Cow‘s Milk Protein Allergy (original) (raw)


Cow’s milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, α-1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow’s milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers (α-1 antitrypsin, lactoferrin, and calprotectin) by an integrative...

Cow's milk protein allergy (CMPA) is the most common food allergy in infancy. Non-IgE mediated (NIM) forms are little studied and the responsible mechanisms of tolerance acquisition remain obscure. Our aim was to study the intestinal microbiota and related parameters in the fecal samples of infants with NIM-CMPA, to establish potential links between type of formula substitutes, microbiota, and desensitization. Seventeen infants between one and two years old, diagnosed with NIM-CMPA, were recruited. They were all on an exclusion diet for six months, consuming different therapeutic protein hydrolysates. After this period, stool samples were obtained and tolerance development was evaluated by oral challenges. A control group of 10 age-matched healthy infants on an unrestricted diet were included in the study. Microbiota composition, short-chain fatty acids, calprotectin, and transforming growth factor (TGF)-β₁ levels were determined in fecal samples from both groups. Infants with N...

Cow’s milk allergy (CMA) is the most prevalent food allergy (FA) in infancy and early childhood and can be present with various clinical phenotypes. The significant increase in FA rates recorded in recent decades has been associated with environmental and lifestyle changes that limit microbial exposure in early life and induce changes in gut microbiome composition. Gut microbiome is a diverse community of microbes that colonize the gastrointestinal tract (GIT) and perform beneficial functions for the host. This complex ecosystem interacts with the immune system and has a pivotal role in the development of oral tolerance to food antigens. Emerging evidence indicates that alterations of the gut microbiome (dysbiosis) in early life cause immune dysregulation and render the host susceptible to immune-mediated diseases later in life. Therefore, the colonization of the gut by “healthy” microbes that occurs in the first years of life determines the lifelong health of the host. Here, we pre...

Cow's milk allergy (CMA) is one of the earliest and most common food allergy and can be elicited by both IgE- or non-IgE-mediated mechanism. We previously described dysbiosis in children with IgE-mediated CMA and the effect of dietary treatment with extensively hydrolyzed casein formula (EHCF) alone or in combination with the probiotic Lactobacillus rhamnosus GG (LGG). On the contrary, the gut microbiota in non-IgE-mediated CMA remains uncharacterized. In this study we evaluated gut microbiota composition and fecal butyrate levels in children affected by non-IgE-mediated CMA. We found a gut microbiota dysbiosis in non-IgE-mediated CMA, driven by an enrichment of Bacteroides and Alistipes. Comparing these results with those previously obtained in children with IgE-mediated CMA, we demonstrated overlapping signatures in the gut microbiota dysbiosis of non-IgE-mediated and IgE-mediated CMA children, characterized by a progressive increase in Bacteroides from healthy to IgE-mediated...

Food allergy (FA) and, in particular, IgE-mediated cow’s milk allergy is associated with compositional and functional changes of gut microbiota. In this study, we compared the gut microbiota of cow’s milk allergic (CMA) infants with that of cow’s milk sensitized (CMS) infants and Healthy controls. The effect of the intake of a mixture of Bifidobacterium longum subsp. longum BB536, Bifidobacterium breve M-16V and Bifidobacterium longum subsp. infantis M-63 on gut microbiota modulation of CMA infants and probiotic persistence was also investigated. Gut microbiota of CMA infants resulted to be characterized by a dysbiotic status with a prevalence of some bacteria as Haemophilus, Klebsiella, Prevotella, Actinobacillus and Streptococcus. Among the three strains administered, B.longum subsp. infantis colonized the gastrointestinal tract and persisted in the gut microbiota of infants with CMA for 60 days. This colonization was associated with perturbations of the gut microbiota, specifical...

The objective of this pilot study was to assess the fecal microbiome and different immunological parameters in infant feces and maternal milk from mother–infant pairs in which the infants were suffering from different gastrointestinal disorders (colic, non-IgE-mediated cow milk protein allergy (CMPA), and proctocolitis). A cohort of 30 mother–infant pairs, in which the infants were diagnosed with these gastrointestinal disorders or included as healthy controls, were recruited. Bacterial composition of infant feces and breast milk was determined by metataxonomic sequencing. Immunological compounds were quantified using multiplexed immunoassays. A higher abundance of Eggerthellaceae, Lachnospiraceae and Peptostreptococcaceae, and lower abundance of Bifidobacterium and higher abundance of Rothia were registered in fecal samples from the CMPA group. Eggerthellaceae was also significantly more abundant in milk samples of the CMPA group. There were no differences in the concentration of i...