Multi-Task Learning for Diabetic Retinopathy Grading and Lesion Segmentation (original) (raw)

Multi-Lesion Segmentation of Diabetic Retinopathy Using Deep Learning

International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022

Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME) are the two major complications of diabetes and have a significant impact on working individuals of the world population. DR doesn't give any early symptoms. Therefore, it is important to diagnose DR at an early stage. The two above mentioned diseases usually depend on the presence and areas of lesions in fundus images. The four main related lesions include soft exudates, hard exudates,microaneurysms, and haemorrhages. Since lesions in retinal fundus images are a pivotal indicator of DR, analyzing retinal fundus images is the most popular method for DR screening. The examination of fundus images is time-consuming and small lesions are hard to observe. Therefore, adopting deep learning techniques for lesion segmentation is of great importance. In this project, we use one of the deep learning techniques called U-Net, which is a variant of Convolutional Neural Networks (CNN) for multiple lesion segmentation.

Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy

IEEE Access

Early diagnosis and treatment of diabetic retinopathy (DR) can reduce the risk of vision loss. There are five stages of DR consisting of no DR, mild DR, moderate DR, severe DR, and proliferate DR. This paper presents a multitask deep learning model to detect all the five stages of DR more accurately than existing methods. The developed multitask model consists of one classification model and one regression model, each with its own loss function. After training the regression model and the classification model separately, the features extracted by these two models are concatenated and inputted to a multilayer perceptron network to classify the five stages of DR. A modified Squeeze Excitation Densely Connected deep neural network is also developed as part of this multitasking approach. The developed multitask model is applied to the two large Kaggle datasets of APTOS and EyePACS. The results obtained indicate that the developed multitask model achieved a weighted Kappa score of 0.90 and 0.88 for the APTOS and EyePACS datasets, respectively. In addition, the micro and macro average area under the receiver operating characteristic (ROC) curve was found to be 0.96, and 0.93, respectively, which are higher than existing methods for detecting the five stages of DR. INDEX TERMS Diabetic retinopathy (DR), eye fundus images, five stages of diabetic retinopathy, multitasking deep neural network, squeeze excitation densely connected network.

Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions

Sensors

Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz., screening, segmentation, prediction, classification, and validation, is presented here. A critical analysis of th...

A multi-task deep learning model for the classification of Age-related Macular Degeneration

2019

Age-related Macular Degeneration (AMD) is a leading cause of blindness. Although the Age-Related Eye Disease Study group previously developed a 9-step AMD severity scale for manual classification of AMD severity from color fundus images, manual grading of images is time-consuming and expensive. Built on our previous work DeepSeeNet, we developed a novel deep learning model for automated classification of images into the 9-step scale. Instead of predicting the 9-step score directly, our approach simulates the reading center grading process. It first detects four AMD characteristics (drusen area, geographic atrophy, increased pigment, and depigmentation), then combines these to derive the overall 9-step score. Importantly, we applied multi-task learning techniques, which allowed us to train classification of the four characteristics in parallel, share representation, and prevent overfitting. Evaluation on two image datasets showed that the accuracy of the model exceeded the current st...

Literature Survey on Diabetic Retinopathy Classification Using Deep Learning

IJRASET, 2021

Diabetic retinopathy (DR) is a medical condition that damages eye retinal tissues. Diabetic retinopathy leads to mild to complete blindness. It has been a leading cause of global blindness. The identification and categorization of DR take place through the segmentation of parts of the fundus image or the examination of the fundus image for the incidence of exudates, lesions, microaneurysms, and so on. This research aims to study and summarize various recent proposed techniques applied to automate the process of classification of diabetic retinopathy. In the current study, the researchers focused on the concept of classifying the DR fundus images based on their severity level. Emphasis is on studying papers that proposed models developed using transfer learning. Thus, it becomes vital to develop an automatic diagnosis system to support physicians in their work. I.

Detection of Diabetic Retinopathy Using Deep Learning

International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022

Diabetic retinopathy is one of the most dangerous complications of diabetes, leading to permanent blindness if left untreated. One of the major challenges is early detection, which is very important for the success of treatment. Unfortunately, accurate identification of the stage of diabetic retinopathy is notoriously tricky and requires expert human interpretation of fundus images. Simplifying the detection step is essential and can help millions of people. Convolutional Neural Networks (CNNs) have been successfully used in many neighboring subjects and for the diagnosis of diabetic retinopathy itself. However, the high cost of large annotated datasets as well as inconsistencies between different clinicians hinders the implementation of these methods. In this paper, we propose an automatic method based on deep learning to detect the stage of diabetic retinopathy using a single human fundus image. In addition, we propose a multi-stage transfer learning approach that uses similar datasets with different labels. The presented method can be used as a screening method for the early detection of diabetic retinopathy with a sensitivity and specificity of 0.99 and is ranked 54 out of 2943 competing methods (quadratic weighted kappa score 0.925466) on the APTOS 2019 Blindness Detection Dataset (13,000 images). I.

Diabetic Retinopathy Detection and Grading using Deep learning

MJEER, 2022

One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model.

IJERT-A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images

International Journal of Engineering Research and Technology (IJERT), 2020

https://www.ijert.org/a-novel-weakly-supervised-multitask-architecture-for-retinal-lesions-segmentation-on-fundus-images https://www.ijert.org/research/a-novel-weakly-supervised-multitask-architecture-for-retinal-lesions-segmentation-on-fundus-images-IJERTV9IS050205.pdf The first step towards an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multitask architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions.

General deep learning model for detecting diabetic retinopathy

BMC Bioinformatics, 2021

Background Doctors can detect symptoms of diabetic retinopathy (DR) early by using retinal ophthalmoscopy, and they can improve diagnostic efficiency with the assistance of deep learning to select treatments and support personnel workflow. Conventionally, most deep learning methods for DR diagnosis categorize retinal ophthalmoscopy images into training and validation data sets according to the 80/20 rule, and they use the synthetic minority oversampling technique (SMOTE) in data processing (e.g., rotating, scaling, and translating training images) to increase the number of training samples. Oversampling training may lead to overfitting of the training model. Therefore, untrained or unverified images can yield erroneous predictions. Although the accuracy of prediction results is 90%–99%, this overfitting of training data may distort training module variables. Results This study uses a 2-stage training method to solve the overfitting problem. In the training phase, to build the model,...