Three-dimensional arrangement of elastic fibers in the human corneal stroma (original) (raw)

Structural studies of the corneal stroma with focus on the elastic fibre network in health and disease

2016

The optical and biomechanical properties of the cornea are largely governed by the collagen-rich stroma, a layer that represents approximately 90% of the total thickness. It has been postulated that a novel corneal layer exists in the posterior stroma, immediately above Descemet’s membrane, termed ‘pre-Descemet’s layer’. The main aim of this thesis was to determine if this region has different structural properties to the overlying stroma. A second aim was to examine the elastic fibre distribution throughout the depth of the stroma in healthy and diseased corneas, with focus on pre-Descemet’s layer. Techniques used include serial block face scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, amongst various other imaging techniques. Depth analysis revealed that centre-to-centre interfibrillar spacing was significantly lower in the first ~10µm of stroma distal to Descemet’s membrane compared to overlying regions in central cornea. Three-dimensional ...

Three-Dimensional Distribution of Transverse Collagen Fibers in the Anterior Human Corneal Stroma

Investigative Opthalmology & Visual Science, 2013

PURPOSE. Recent investigations of human corneal structure and biomechanics have shown that stromal collagen fibers (lamellae) are organized into a complex, highly intertwined threedimensional meshwork of transverse oriented fibers that increases stromal stiffness and controls corneal shape. The purpose of this study was to characterize the three-dimensional distribution of transverse collagen fibers along the major meridians of the cornea using an automated method to rapidly quantify the collagen fibers' angular orientation. METHODS. Three eyes from three donors were perfusion-fixed under pressure, excised, and cut into four quadrants. Quadrants were physically sectioned using a vibratome and scanned using nonlinear optical high-resolution macroscopy. Planes were analyzed numerically using software to identify collagen fiber angles relative to the corneal surface, stromal depth, and radial position within the anterior 250 lm of the stroma. RESULTS. The range of fiber angles and the fiber percentage having an angular displacement greater than 63.58 relative to the corneal surface (''transverse fibers'') was highest in the anterior stroma and decreased with depth. Numerical analysis showed no significant differences in fiber angles and transverse fibers between quadrants, meridians, and radial position. CONCLUSIONS. These results match our previous observation of a depth-dependent gradient in stromal collagen interconnectivity in the central cornea, and show that this gradient extends from the central cornea to the limbus. The lack of a preferred distribution of angled fibers with regard to corneal quadrant or radial position likely serves to evenly distribute loads and to avoid the formation of areas of stress concentration.

Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus

Journal of Structural Biology, 2010

A network of circumferentially oriented collagen fibrils exists in the periphery of the human cornea, and is thought to be pivotal in maintaining corneal biomechanical stability and curvature. However, it is unknown whether or not this key structural arrangement predominates throughout the entire corneal thickness or exists as a discrete feature at a particular tissue depth; or if it incorporates any elastic fibres and how, with respect to tissue depth, the circumcorneal annulus integrates with the orthogonally arranged collagen of the central cornea. To address these issues we performed a three-dimensional investigation of fibrous collagen and elastin architecture in the peripheral and central human cornea using synchrotron X-ray scattering and non-linear microscopy. This showed that the network of collagen fibrils circumscribing the human cornea is located in the posterior one-third of the tissue and is interlaced with significant numbers of mature elastic fibres which mirror the alignment of the collagen. The orthogonal arrangement of collagen in the central cornea is also mainly restricted to the posterior stromal layers. This information will aid the development of corneal biomechanical models aimed at explaining how normal corneal curvature is sustained and further predicting the outcome of surgical procedures.

Mapping Collagen Organization in the Human Cornea: Left and Right Eyes Are Structurally Distinct

Investigative Opthalmology & Visual Science, 2006

PURPOSE. Aspects of the biomechanics and surface topography of fellow human corneas are known to exhibit midline symmetry, but the structural basis of these observations is poorly understood. The mechanical performance of the cornea is strongly influenced by the organization of stromal collagen fibrils. The present study was designed to examine and compare the organization of collagen fibrils in the corneal stroma of left and right eyes. METHODS. Wide-angle x-ray scattering was used to map in detail the orientation and distribution of fibrillar collagen across the cornea, limbus, and adjacent sclera of three normal human eyes, including a fellow pair, and the central 9-mm corneal region of a further four eyes. RESULTS. Fibrillar collagen in the human cornea and limbus is arranged anisotropically, and in a highly specific manner. Left and right corneas are structurally distinct. In general, the mass distribution of preferentially aligned fibrils in the cornea appears to exhibit a degree of midline symmetry between left and right eyes. CONCLUSIONS. Structural information, such as that presented herein, will enable a better understanding of corneal biomechanics and shape. Midline symmetry in the distribution of aligned, mechanically reinforcing collagen fibrils between left and right eyes may relate to the biomechanical and topographical enantiomorphism reported in the literature.

Elastic modulus and collagen organization of the rabbit cornea: Epithelium to endothelium

Acta Biomaterialia, 2014

The rabbit is commonly used to evaluate new corneal prosthetics and study corneal wound healing. Knowledge of the stiffness of the rabbit cornea would better inform the design and fabrication of keratoprosthetics and substrates with relevant mechanical properties for in vitro investigations of corneal cellular behavior. This study determined the elastic modulus of the rabbit corneal epithelium, anterior basement membrane (ABM), anterior and posterior stroma, Descemet's membrane (DM) and endothelium using atomic force microscopy (AFM). In addition, three-dimensional collagen fiber organization of the rabbit cornea was determined using nonlinear optical high-resolution macroscopy. The elastic modulus as determined by AFM for each corneal layer was: epithelium, 0.57 ± 0.29 kPa (mean ± SD); ABM, 4.5 ± 1.2 kPa, anterior stroma, 1.1 ± 0.6 kPa; posterior stroma, 0.38 ± 0.22 kPa; DM, 11.7 ± 7.4 kPa; and endothelium, 4.1 ± 1.7 kPa. The biophysical properties, including the elastic modulus, are unique for each layer of the rabbit cornea and are dramatically softer in comparison to the corresponding regions of the human cornea. Collagen fiber organization is also dramatically different between the two species, with markedly less intertwining observed in the rabbit vs. human cornea. Given that the substratum stiffness considerably alters the corneal cell behavior, keratoprosthetics that incorporate mechanical properties simulating the native human cornea may not elicit optimal cellular performance in rabbit corneas that have dramatically different elastic moduli. These data should allow for the design of substrates that better mimic the biomechanical properties of the corneal cellular environment.

Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma

Experimental eye research, 2017

The optical and biomechanical properties of the cornea are largely governed by the collagen-rich stroma, a layer that represents approximately 90% of the total thickness. Within the stroma, the specific arrangement of superimposed lamellae provides the tissue with tensile strength, whilst the spatial arrangement of individual collagen fibrils within the lamellae confers transparency. In keratoconus, this precise stromal arrangement is lost, resulting in ectasia and visual impairment. In the normal cornea, we previously characterised the three-dimensional arrangement of an elastic fiber network spanning the posterior stroma from limbus-to-limbus. In the peripheral cornea/limbus there are elastin-containing sheets or broad fibers, most of which become microfibril bundles (MBs) with little or no elastin component when reaching the central cornea. The purpose of the current study was to compare this network with the elastic fiber distribution in post-surgical keratoconic corneal buttons...

Collagen Fibrils Appear More Closely Packed in the Prepupillary Cornea: Optical and Biomechanical Implications

Investigative Opthalmology & Visual Science, 2003

The size and organization of stromal collagen fibrils influence the biomechanical and optical properties of the cornea and hence its function. How fibrillar structure varies with position across the cornea has not been fully characterized. The present study was designed to quantify the collagen fibril spacing and diameter across the normal human cornea and to relate this to the properties of the tissue. METHODS. Small-angle x-ray diffraction was used to map in detail the variation in fibril spacing and fibril diameter along orthogonal medial-lateral and inferior-superior meridians of five normal human corneoscleral discs. RESULTS. Mean fibril diameters remained constant across all corneas up to the limbus, whereupon a sharp increase was observed. However, mean fibril spacing across the central 4 ϫ 3 mm (prepupillary) cornea measured 5% to 7% lower than in the peripheral cornea. CONCLUSIONS. Collagen fibrils in the prepupillary cornea appear to be more closely packed than in the peripheral cornea. Anisotropy in fibril packing across the cornea has potential implications for the transparency and refractive index of the tissue. Biomechanically, it is possible that the higher packing density of stress-bearing collagen fibrils in the prepupillary cornea is necessary for maintaining corneal strength, and hence curvature, in a region of reduced tissue thickness. By inference, these results could have important implications for the development of corneal models for refractive surgery.

Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization

Proceedings of the National Academy of Sciences, 2001

The ability of the cornea to transmit light while being mechanically resilient is directly attributable to the formation of an extracellular matrix containing orthogonal sheets of collagen fibrils. The detailed structure of the fibrils and how this structure underpins the mechanical properties and organization of the cornea is understood poorly. In this study, we used automated electron tomography to study the three-dimensional organization of molecules in corneal collagen fibrils. The reconstructions show that the collagen molecules in the 36-nm diameter collagen fibrils are organized into microfibrils (≈4-nm diameter) that are tilted by ≈15° to the fibril long axis in a right-handed helix. An unexpected finding was that the microfibrils exhibit a constant-tilt angle independent of radial position within the fibril. This feature suggests that microfibrils in concentric layers are not always parallel to each other and cannot retain the same neighbors between layers. Analysis of the ...

Quantification of Collagen Organization in the Peripheral Human Cornea at Micron-Scale Resolution

Biophysical Journal, 2011

The collagen microstructure of the peripheral cornea is important in stabilizing corneal curvature and refractive status. However, the manner in which the predominantly orthogonal collagen fibrils of the central cornea integrate with the circumferential limbal collagen is unknown. We used microfocus wide-angle x-ray scattering to quantify the relative proportion and orientation of collagen fibrils over the human corneolimbal interface at intervals of 50 mm. Orthogonal fibrils changed direction 1-1.5 mm before the limbus to integrate with the circumferential limbal fibrils. Outside the central 6 mm, additional preferentially aligned collagen was found to reinforce the cornea and limbus. The manner of integration and degree of reinforcement varied significantly depending on the direction along which the limbus was approached. We also employed small-angle x-ray scattering to measure the average collagen fibril diameter from central cornea to limbus at 0.5 mm intervals. Fibril diameter was constant across the central 6 mm. More peripherally, fibril diameter increased, indicative of a merging of corneal and scleral collagen. The point of increase varied with direction, consistent with a scheme in which the oblique corneal periphery is reinforced by chords of scleral collagen. The results have implications for the cornea's biomechanical response to ocular surgeries involving peripheral incision.

Biomechanical model of human cornea based on stromal microstructure

Journal of Biomechanics, 2010

The optical characteristics of the human cornea depends on the mechanical balance between the intraocular pressure and intrinsic tissue stiffness. A wide range of ophthalmic surgical procedures alter corneal biomechanics to induce local or global curvature changes for the correction of visual acuity. Due to the large number of surgical interventions performed every day, a deeper understanding of corneal biomechanics is needed to improve the safety of these procedures and medical devices. The aim of this study is to propose a biomechanical model of the human cornea, based on stromal microstructure. The constitutive mechanical law includes collagen fiber distribution based on X-ray scattering analysis, collagen cross-linking, and fiber uncrimping. Our results showed that the proposed model reproduced inflation and extensiometry experimental data [Elsheikh et al., Curr. Eye Res., 2007; Elsheikh et al., Exp. Eye Res., 2008] successfully. The mechanical properties obtained for different age groups demonstrated an increase in collagen cross-linking for older specimens. In future work such a model could be used to simulate non-symmetric interventions, and provide better surgical planning.