Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes (original) (raw)
Related papers
Perivascular adipose tissue in cardiovascular diseases – an update
The Anatolian Journal of Cardiology, 2019
The perivascular adipose tissue (PVAT) has been recently recognized as an important factor in vascular biology, with implications in the pathogenesis of cardiovascular diseases. The cell types and the precursor cells of PVAT appear to be different according to their location, with the component cell type including white, brown, and beige adipocytes. PVAT releases a panel of adipokines and cytokines that maintain vascular homeostasis, but it also has the ability of intervention in the pathogenesis of the atherosclerotic plaques development and in the vascular tone modulation. In this review, we summarize the current knowledge and discuss the role of PVAT as a major contributing factor in the pathogenesis of ischemic coronary disease, hypertension, obesity, and diabetes mellitus. The new perspective of PVAT as an endocrine organ, along with the recent knowledge of the mechanisms involved in dysfunctional PVAT intervention in local vascular homeostasis perturbations, nowadays represent a new area of research in cardiovascular pathology, aiming to discover new therapeutic methods.
Perivascular Adipose Tissue: the Sixth Man of the Cardiovascular System
Cardiovascular drugs and therapy, 2018
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regu...
Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue
International journal of endocrinology, 2017
Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tiss...
Perivascular Adipose Tissue and Coronary Vascular Disease
Arteriosclerosis, Thrombosis, and Vascular Biology, 2014
Coronary perivascular adipose tissue is a naturally occurring adipose tissue depot that normally surrounds the major coronary arteries on the surface of the heart. Although originally thought to promote vascular health and integrity, there is a growing body of evidence to support that coronary perivascular adipose tissue displays a distinct phenotype relative to other adipose depots and is capable of producing local factors with the potential to augment coronary vascular tone, inflammation, and the initiation and progression of coronary artery disease. The purpose of the present review is to outline previous findings about the cardiovascular effects of coronary perivascular adipose tissue and the potential mechanisms by which adipose-derived factors may influence coronary vascular function and the progression of atherogenesis.
Physiological Genomics, 2013
Inflammatory crosstalk between perivascular adipose tissue (PVAT) and the blood vessel 36 wall has been proposed to contribute to the pathogenesis of atherosclerosis. We 37 previously reported that human perivascular (PV) adipocytes exhibit a pro-inflammatory 38 phenotype and less adipogenic differentiation than do subcutaneous (SQ) adipocytes. To 39 gain a global view of the genomic basis of biologic differences between PV and SQ 40 adipocytes, we performed genome-wide expression analyses to identify differentially 41 expressed genes between adipocytes derived from human SQ versus PV adipose tissues. 42
Perivascular adipose tissue and its role in type 2 diabetes and cardiovascular disease
2011
Obesity is associated with insulin resistance, hypertension, and cardiovascular disease, but the mechanisms underlying these associations are incompletely understood. Microvascular dysfunction may play an important role in the pathogenesis of both insulin resistance and hypertension in obesity. Adipose tissue-derived substances (adipokines) and especially inflammatory products of adipose tissue control insulin sensitivity and vascular function. In the past years, adipose tissue associated with the vasculature, or perivascular adipose tissue (PAT), has been shown to produce a variety of adipokines that contribute to regulation of vascular tone and local inflammation. This review describes our current understanding of the mechanisms linking perivascular adipose tissue to vascular function, inflammation, and insulin resistance. Furthermore, we will discuss mechanisms controlling the quantity and adipokines secretion by PAT.
Depot specific differences during adipogenesis of porcine stromal-vascular cells
Cell Biology International, 2008
Recently a role of adipose tissue as an endocrine organ secreting factors involved in the regulation of whole-body energy homeostasis has emerged. Preadipocytes in different fat depots have distinct adipogenic potential and the metabolic activity differs between mature adipocytes of different depot origins. Here we describe the proliferation and differentiation of stromal-vascular cells derived from subcutaneous and visceral fat depots of adult pigs. We demonstrate that subcutaneous porcine preadipocytes proliferate more actively and that individual subcutaneous adipocytes have a more rapid accumulation of triacylglycerols than visceral cells. During differentiation, subcutaneous and visceral preadipocytes showed similar gene expression patterns with increased expression of adiponectin (APM1), adipocyte-specific fatty acid binding protein (FABP4), catalase (CAT), and peroxisome proliferator-activated receptor gamma 2 (PPARG2). Furthermore, initial data showing depot-originated effects on the expression of CAT, carnitine palmitoyl transferase 1B (CPT1B) and FABP4 suggest possible depot specific differences in the function and metabolism of mature porcine adipocytes. Ó
Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes
American journal of physiology. Regulatory, integrative and comparative physiology, 2002
Fat distribution varies among individuals with similar body fat content. Innate differences in adipose cell characteristics may contribute because lipid accumulation and lipogenic enzyme activities vary among preadipocytes cultured from different fat depots. We determined expression of the adipogenic transcription factors peroxisome proliferator activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein-alpha (C/EBP-alpha) and their targets in abdominal subcutaneous, mesenteric, and omental preadipocytes cultured in parallel from obese subjects. Subcutaneous preadipocytes, which had the highest lipid accumulation, glycerol-3-phosphate dehydrogenase (G3PD) activity, and adipocyte fatty acid binding protein (aP2) abundance, had highest PPAR-gamma and C/EBP-alpha expression. Levels were intermediate in mesenteric and lowest in omental preadipocytes. Overexpression of C/EBP-alpha in transfected omental preadipocytes enhanced differentiation. The proportion of differentiate...