Bayesian Connective Field Modeling: a Markov Chain Monte Carlo approach (original) (raw)
Related papers
Bayesian Models for fMRI Data Analysis
Wiley interdisciplinary reviews. Computational statistics
Functional magnetic resonance imaging (fMRI), a noninvasive neuroimaging method that provides an indirect measure of neuronal activity by detecting blood flow changes, has experienced an explosive growth in the past years. Statistical methods play a crucial role in understanding and analyzing fMRI data. Bayesian approaches, in particular, have shown great promise in applications. A remarkable feature of fully Bayesian approaches is that they allow a flexible modeling of spatial and temporal correlations in the data. This paper provides a review of the most relevant models developed in recent years. We divide methods according to the objective of the analysis. We start from spatio-temporal models for fMRI data that detect task-related activation patterns. We then address the very important problem of estimating brain connectivity. We also touch upon methods that focus on making predictions of an individual's brain activity or a clinical or behavioral response. We conclude with a ...
Bayesian inference of structural brain networks
NeuroImage
Structural brain networks are used to model white-matter connectivity between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion-weighted magnetic resonance imaging in combination with probabilistic tractography. Unfortunately, as of yet, none of the existing approaches provide an undisputed way of inferring brain networks from the streamline distributions which tractography produces. State-of-the-art methods rely on an arbitrary threshold or, alternatively, yield weighted results that are difficult to interpret. In this paper, we provide a generative model that explicitly describes how structural brain networks lead to observed streamline distributions. This allows us to draw principled conclusions about brain networks, which we validate using simultaneously acquired resting-state functional MRI data. Inference may be further informed by means of a prior which combines connectivity estimates from mu...
NeuroImage, 2013
The traditional way to study the properties of visual neurons is to measure their responses to visually presented stimuli. A second way to understand visual neurons is to characterize their responses in terms of activity elsewhere in the brain. Understanding the relationships between responses in distinct locations in the visual system is essential to clarify this network of cortical signaling pathways. Here, we describe and validate connective field modeling, a model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI). Just as the receptive field of a visual neuron predicts its response as a function of stimulus position, the connective field of a neuron predicts its response as a function of activity in another part of the brain. Connective field modeling opens up a wide range of research opportunities to study information processing in the visual system and other topographically organized cor...