Happy is the man who fills his quiver with them (Ps. 127:5): constructions of masculinities in the Psalms (original) (raw)

Abstract

sparkles

AI

This research explores the dimensions of masculinity as constructed in the Psalms, particularly focusing on the metaphor of the quiver and its implications for societal perceptions of male identity. It aims to analyze how these ancient texts shape and reflect contemporary understandings of gender roles, examining various linguistic and contextual factors that contribute to the portrayal of masculinities within the biblical narrative.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (85)

  1. A. Sehmel, G., 1980. Particle and gas dry deposition: a review, Atmos. Environ. (1967). https://doi.org/10.1016/0004-6981(80)90031-1
  2. Aftab, S.M.A., Rafie, A.S.M., Razak, N.A., Ahmad, K.A., 2016. Turbulence model selection for low reynolds number flows. PLoS One 11, 1-15. https://doi.org/10.1371/journal.pone.0153755
  3. Anwar Hossain, K.M., Easa, S.M., Lachemi, M., 2009. Evaluation of the effect of marine salts on urban built infrastructure. Build. Environ. 44, 713-722. https://doi.org/10.1016/j.buildenv.2008.06.004
  4. Ban, S., Matsuda, K., Sato, K., Ohizumi, T., 2016. Long-term assessment of nitrogen deposition at remote EANET sites in Japan. Atmos. Environ. 146, 70-78.
  5. Bonazza, A., Brimblecombe, P., Grossi, C.M., Sabbioni, C., 2007. Carbon in black crusts from the Tower of London. Environ. Sci. Technol. 41, 4199-4204. https://doi.org/10.1021/es062417w
  6. Boyle, E.A., Lee, J.-M., Echegoyen, Y., Noble, A., Moos, S., Carrasco, G., Zhao, N., Kayser, R., Zhang, J., Gamo, T., Obata, H., Norisuye, K., 2014. Anthropogenic lead emissions in the ocean. Oceanography 27, 69-75.
  7. Bozlaker, A., Muezzinoglu, A., Odabasi, M., 2008. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey 153, 1093-1102. https://doi.org/10.1016/j.jhazmat.2007.09.064
  8. Carpman, N., 2011. Turbulence Intensity in Complex Environments and its Influence on Small Wind Turbines. Dept. Earth Sci. Uppsala Univ.
  9. Chan, E.A.W., Gantt, B., McDow, S., 2018. The reduction of summer sulfate and switch from summertime to wintertime PM2.5 concentration maxima in the United States. Atmos. Environ. 175, 25-32. https://doi.org/10.1016/j.atmosenv.2017.11.055
  10. Chang, K., Fang, G., Lu, C., Bai, H., 2003. Estimating PAH dry deposition by measuring gas and particle phase concentrations in ambient air 3, Aerosol Air Qual. Res. 41-51.
  11. Chen, S., Fang, G., Lin, C., Hsieh, L., 1996. Dry deposition and particle size distributions of nitrate and sulfate in ambient air. Toxicol. Environ. Chem. 62, 49-64. https://doi.org/10.1080/02772249709358497
  12. Chien, C., Ho, T., Sanborn, M.E., Yin, Q., Paytan, A., 2017. Lead concentrations and isotopic compositions in the Western Philippine Sea. Mar. Chem. 189, 10-16. https://doi.org/10.1016/j.marchem.2016.12.007
  13. Chu, C.C., Fang, G.C., Chen, J.C., Yang, I.L., 2008. Dry deposition study by using dry deposition plate and water surface sampler in Shalu, central Taiwan. Environ. Monit. Assess. 146, 441-451. https://doi.org/10.1007/s10661-007-0090-8
  14. Dasch, J.M., 1985. Direct measurement of dry deposition to a polyethylene bucket and various surrogate surfaces. Environ. Sci. Technol. 19, 721-725. https://doi.org/10.1021/es00138a011
  15. Davidson, C.I., Lindberg, S.E., Schmidt, J.A., Cartwright, L.G., Landis, L.R., 1985. Dry deposition of sulfate onto surrogate surfaces. J. Geophys. Res. 90, 2123-2130. https://doi.org/10.1029/JD090iD01p02123
  16. Driscoll, C.T., Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eagar, C., Lambert, K.F., Likens, G.E., Stoddard, J.L., Weathers, K.C., 2018. Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51, 180- 198.
  17. Endo, T., Yagoh, H., Sato, K., Matsuda, K., Hayashi, K., Noguchi, I., Sawada, K., 2011. Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008. Atmos. Environ. 45, 1259-1267. https://doi.org/10.1016/j.atmosenv.2010.12.003
  18. Eng, A., Harner, T., Pozo, K., 2013. A prototype passive air sampler for measuring dry deposition of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. Lett. 1, 77-81. https://doi.org/10.1021/ez400044z
  19. Erisman, J.W., Van Pul, A., Wyers, P., 1994. Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmos. Environ. 28, 2595-2607. https://doi.org/https://doi.org/10.1016/1352-2310(94)90433-2
  20. Etyemezian, V., Davidson, C.I., Finger, S., Striegel, M.F., Barabas, N., Chow, J.C., 1998. Vertical gradients of pollutant concentrations and deposition fluxes on a tall limestone building. J. Am. Inst. Conserv. 37, 187-210. https://doi.org/10.2307/3179802
  21. Fishwick, M.P., Ussher, S.J., Sedwick, P.N., Lohan, M.C., Worsfold, P.J., Buck, K.N., Church, T.M., 2018. Impact of surface ocean conditions and aerosol provenance on the dissolution of aerosol manganese, cobalt, nickel and lead in seawater. Mar. Chem. 198, 28-43. https://doi.org/10.1016/j.marchem.2017.11.003
  22. Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Wichink- kruit, R., Butterbach-bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Palmer, P.I., Loreto, F., Ro-poulsen, H., Cellier, P., Cape, J.N., Horva, L., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Zechmeister-boltenstern, S., Williams, J., Dowd, C.O., Skiba, U., Bru, N., 2009. Atmospheric composition change: ecosystems- atmosphere interactions. Atmos. Environ. 43, 5193-5267. https://doi.org/10.1016/j.atmosenv.2009.07.068
  23. Friedlander, S.K., 1977. Smoke, Dust and Haze: Fundamentals of Aerosol Behavior. John Wiley & Sons Inc., New York.
  24. Giardina, M., Buffa, P., 2018. A new approach for modeling dry deposition velocity of particles. Atmos. Enviroment 180, 11-22. https://doi.org/10.1016/j.atmosenv.2018.02.038
  25. Hall, N.L., Dvonch, J.T., Marsik, F.J., Barres, J.A., Landis, M.S., 2017. An artificial turf-based surrogate surface collector for the direct measurement of atmospheric mercury dry deposition. Int. J. Environ. Res. Public Health 14. https://doi.org/10.3390/ijerph14020173
  26. Hamilton, R.S., Mansfield, T.A., 1991. Airborne particulate elemental carbon: its sources, transport, and contribution to dark smoke and soiling. Atmos. Environ. 25, 715-723.
  27. Hand, J.L., Schichtel, B.A., Malm, W.C., Pitchford, M.L., 2012. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 12, 10353-10365. https://doi.org/10.5194/acp-12-10353-2012
  28. Heard, A.M., Sickman, J.O., Rose, N.L., Bennett, D.M., Lucero, D.M., Melack, J.M., Curtis, J.H., 2014. 20th century atmospheric deposition and acidification trends in lakes of the Sierra Nevada, California, USA. Environ. Sci. Technol. 48, 10054-10061 https://doi.org/10.1021/es500934s
  29. Holsen, T.M., Noll, K.E., 1992. Dry deposition of atmospheric particles: application of current models to ambient data. Environ. Sci. Technol. 26, 1807-1815. https://doi.org/10.1021/es00033a015
  30. Holsen, T.M., Noll, K.E., Liu, S.P., Lee, W.-J., 1991. Dry deposition of polychlorinated biphenyls in urban areas. Environ. Sci. Technol. 25, 1075-1081. https://doi.org/10.1021/es00018a009
  31. Horvath, H., Pesava, P., Toprak, S., 1996. Technique for measuring the depostion velocity of particulate matter to building surfaces 190, 255-258. https://doi.org/10.1016/0048- 9697(96)05216-3
  32. Huang, J., Lyman, S.N., Hartman, J.S., Gustin, M.S., 2014. A review of passive sampling systems for ambient air mercury measurements. Environ. Sci. Process. Impacts 16, 374-392. https://doi.org/10.1039/C3EM00501A
  33. Im, U., Christodoulaki, S., Violaki, K., Zarmpas, P., Kocak, M., Daskalakis, N., 2013. Atmospheric deposition of nitrogen and sulfur over southern Europe with focus on the Mediterranean and the Black Sea. Atmos. Environ. 81, 660-670. https://doi.org/10.1016/j.atmosenv.2013.09.048
  34. Kolesar, K.R., Mattson, C.N., Peterson, P.K., May, N.W., Prendergast, R.K., Pratt, K.A., 2018. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application. Atmos. Environ. 177, 195-202. https://doi.org/10.1016/j.atmosenv.2018.01.008
  35. Kumar, P., Hopke, P.K., Raja, S., Casuccio, G., Lersch, T.L., West, R.R., 2012. Characterization and heterogeneity of coarse particles across an urban area. Atmos. Environ. 46, 449-459. https://doi.org/10.1016/j.atmosenv.2011.09.018
  36. Lestari, P., Oskouie, A.K., Noll, K.E., 2003. Size distribution and dry deposition of particulate mass, sulfate and nitrate in an urban area. Atmos. Environ. 37, 2507-2516. https://doi.org/10.1016/S1352-2310(03)00151-1
  37. Lewandowska, A., Falkowska, L., Jóźwik, J., 2013. Factors determining the fluctuation of fluoride concentrations in PM10 aerosols in the urbanized coastal area of the Baltic Sea (Gdynia, Poland). Environ. Sci. Pollut. Res. 20, 6109-6118. https://doi.org/10.1007/s11356-013-1592-2
  38. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., Seigneur, C., 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36, 19-32.
  39. Liteplo, R., Gomes, R., Howe, P., Malcolm, H., 2002. Fluorides (WHO Report). World Heal. Organ. 262. https://doi.org/10.1016/0043-1354(85)90052-1
  40. Liu, C., Lin, S., Awasthi, A., Tsai, C., Wu, Y., Chen, C., 2014. Sampling and conditioning artifacts of PM2.5 in filter-based samplers. Atmos. Environ. 85, 48-53. https://doi.org/10.1016/j.atmosenv.2013.11.075
  41. Liu, C., Lin, S., Tsai, C., Wu, Y., Chen, C., 2015. Theoretical model for the evaporation loss of PM2.5 during filter sampling. Atmos. Environ. 109, 79-86. https://doi.org/10.1016/j.atmosenv.2015.03.012
  42. Liu, L., Zhang, X., Zhang, Y., Xu, W., Liu, X., Zhang, X., Feng, J., Chen, X., Zhang, Y., Lu, X., Wang, S., Zhang, W., Zhao, L., 2017. Dry particulate nitrate deposition in China. Environ. Sci. Technol. 51, 5572-5581. https://doi.org/10.1021/acs.est.7b00898
  43. Livingston, R.A., 2016. Acid rain attack on outdoor sculpture in perspective. Atmos. Environ. 146, 332-345. https://doi.org/10.1016/j.atmosenv.2016.08.029
  44. Lynam, M.M., Dvonch, J.T., Hall, N.L., Morishita, M., Barres, J.A., 2015. Trace elements and major ions in atmospheric wet and dry deposition across central Illinois, USA. Air Qual. Atmos. Heal. 8, 135-147. https://doi.org/10.1007/s11869-014-0274-7
  45. MacLeod, M., Scheringer, C., Gotz, C., Hungerbuhler, K., Davidson, C.I., Holsen, T.M., 2011. Handbook of Chemical Mass Transport in the Environment, in: Thibodeaux, L.J., Mackay, D. (Eds.), Handbook of Estimation Methods: Environmental Mass Transport Coefficients. Taylor and Francis Group, New York, pp. 104-135.
  46. Mamane, Y., Gottlieb, J., 1992. Nitrate formation on sea-salt and mineral particles-a single particle approach. Atmos. Environ. Part A 26A, 1763-1769. https://doi.org/10.1016/0960- 1686(92)90073-T McCready, D.I., 1986. Wind tunnel modeling of small particle deposition. Aerosol Sci. Technol. 5, 301-312. https://doi.org/10.1080/02786828608959095
  47. Meira, G.R., Andrade, C., Padaratz, I.J., Alonso, C., Borba, J.C., 2007. Chloride penetration into concrete structures in the marine atmosphere zone-relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete. Cem. Concr. Compos. 29, 667-676. https://doi.org/10.1016/j.cemconcomp.2007.05.009
  48. Mohan, M.S., 2016. An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol. 13, 387-402. https://doi.org/10.1007/s13762-015-0898-7
  49. Monteith, D.T., Stoddard, J.L., Evans, C.D., Wit, H.A. De, Forsius, M., Jeffries, D.S., Vuorenmaa, J., Keller, B., Wilander, A., Skjelkva, B.L., 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 10051-10064. https://doi.org/10.1038/nature06316
  50. Nicholson, K.W., 1988. The dry deposition of small particles: a review of experimental measurements. Atmos. Environ. 22, 2653-2666.
  51. Patra, A., Colvile, R., Arnold, S., Bowen, E., Shallcross, D., Martin, D., Price, C., Tate, J., ApSimon, H., Robins, A., 2008. On street observations of particulate matter movement and dispersion due to traffic on an urban road. Atmos. Environ. 42, 3911-3926. https://doi.org/10.1016/j.atmosenv.2006.10.070
  52. Pitt, J.M., Schluter, M.C., Lee, D., Dubberke, W., 1987. Sulfate impurities from deicing salt and durability of portland cement mortar, in: 66th Annual Meeting of the Transportation Board. Transportation Research Board, Washington District of Columbia, pp. 16-23.
  53. Raymond, H.A., Yi, S.M., Moumen, N., Han, Y., Holsen, T.M., 2004. Quantifying the dry deposition of reactive nitrogen and sulfur containing species in remote areas using a surrogate surface analysis approach. Atmos. Environ. 38, 2687-2697. https://doi.org/10.1016/j.atmosenv.2004.02.011
  54. Roupsard, P., Amielh, M., Maro, D., Coppalle, A., Branger, H., Connan, O., Laguionie, P., Hebert, D., Talbaut, M., 2013. Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. J. Aerosol Sci. 55, 12-24. https://doi.org/10.1016/j.jaerosci.2012.07.006
  55. Saliba, N.A., Chamseddine, A., 2012. Uptake of acid pollutants by mineral dust and their effect on aerosol solubility. Atmos. Environ. 46, 256-263. https://doi.org/10.1016/j.atmosenv.2011.09.074
  56. Saxena, A., Kulshreshta, U.C., Kumar, N., Kumari, K.M., Srivastava, S.S., 1992. Dry deposition of nitrate and sulphate on surrogate surfaces. Environ. Int. 18, 509-513. https://doi.org/10.1016/0160-4120(92)90269-A
  57. Schlichting, H., Gersten, K., 2000. Boundary layer theory, 8th ed. Springer Berlin Heidelberg.
  58. Schwede, D., Zhang, L., Vet, R., Lear, G., 2011. An intercomparison of the deposition models used in the CASTNET and CAPMoN networks. Atmos. Environ. 45. https://doi.org/10.1016/j.atmosenv.2010.11.050
  59. Sehmel, G.A., 1973. Particle eddy diffusivities and deposition velocities for isothermal flow and smooth surfaces. J. Aerosol Sci. 4, 125-138. https://doi.org/10.1016/0021-8502(73)90064-5
  60. Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons Inc., New York.
  61. Settle, D.M., Patterson, C.C., 1982. Magnitudes and sources of precipitation and dry deposition fluxes of indestrial and natural leads to the North Pacific at Enewetak. J. Geophys. Res. Ocean. 87, 8857-8869. https://doi.org/10.1029/JC087iC11p08857
  62. Sheu, H., Lee, W., Hwang, K.P., Liow, M., Wu, C., Hsieh, L., 1996. Dry deposition velocities of polycyclic aromatic hydrocarbons in the ambient air of traffic intersections. J. Environ. Sci. Heal.
  63. Part A Environ. Sci. Eng. Toxicol. 31, 2295-2311. https://doi.org/10.1080/10934529609376492
  64. Slooff, W., Eerens, H.C., Janus, J.A., Ros, J.P.M., 1990. Integrated Criteria Document Fluorides.
  65. Stelson, A.W., Seinfeld, J.H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos. Environ. 16, 983-992. https://doi.org/10.1016/0004-6981(82)90184-6
  66. Tanner, P.A., Law, P.T., Tam, W.F., 2001. Comparison of aerosol and dry deposition sampled at two sites in Southern China. Atmos. Environ. 32, 4223-4233. https://doi.org/10.1016/S0021- 8502(00)00091-4
  67. Tasdemir, Y., Esen, F., 2007. Dry deposition fluxes and deposition velocities of PAHs at an urban site in Turkey. Atmos. Environ. 41, 1288-1301. https://doi.org/10.1016/j.atmosenv.2006.09.037
  68. Tasdemir, Y., Günez, H., 2006. Ambient concentration, dry deposition flux and overall deposition velocities of particulate sulfate measured at two sites. Atmos. Res. 81, 250-264. https://doi.org/10.1016/j.atmosres.2006.01.002
  69. Tasdemir, Y., Kural, C., 2005. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey. Environ. Pollut. 138, 463-473. https://doi.org/10.1016/j.envpol.2005.04.012
  70. Tasdemir, Y., Odabasi, M., Vardar, N., Sofuoglu, A., Murphy, T.J., Holsen, T.M., 2004. Dry deposition fluxes and velocities of polychlorinated biphenyls (PCBs) associated with particles. Atmos. Environ. 38, 2447-2456.
  71. Usher, C.R., Michel, A.E., Grassian, V.H., 2003. Reactions on Mineral Dust. Chem. Rev. 103, 4883-4939. https://doi.org/10.1021/cr020657y
  72. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737-750. https://doi.org/10.1890/1051- 0761(1997)007[0737:HAOTGN]2.0.CO;
  73. Wai, K.-M., Leung, K.-Y., Tanner, P.A., 2010. Observational and modeling study of dry deposition on surrogate surfaces in a South China city: implication of removal of atmospheric crustal particles. Environ. Monit. Assess. 164, 143-152. https://doi.org/10.1007/s10661-009- 0881-1
  74. Wolfe, M.F., Schwarzbach, S., Sulaiman, R.A., 1998. Effects of mercury on wildlife: a comprehensive review. Environ. Toxicol. Chem. 17, 146-160. https://doi.org/10.1002/etc.5620170203
  75. Wolff, G.T., 1984. On the nature of nitrate in coarse continental aerosols. Atmos. Environ. 18, 977-981. https://doi.org/10.1016/0004-6981(84)90073-8
  76. Wu, Y.-L., Davidson, C.I., Dolske, D.A., Sherwood, S.I., 1992a. Dry deposition of atmospheric contaminants: the relative importance of aerodynamic, boundary layer, and surface resistances. Aerosol Sci. Technol. 16, 65-81. https://doi.org/10.1080/02786829208959538
  77. Wu, Y.-L., Davidson, C.I., Lindberg, S.E., Russell, A.G., 1992b. Resuspension of particulate chemical species at forested sites. Environ. Sci. Technol. 26, 2428-2435. https://doi.org/10.1021/es00036a014
  78. Yang, H.H., Hsieh, L. Te, Cheng, S.K., 2005. Determination of atmospheric nitrate particulate size distribution and dry deposition velocity for three distinct areas. Chemosphere 60, 1447- 1453. https://doi.org/10.1016/j.chemosphere.2005.01.067
  79. Yang, H.H., Hsieh, L. Te, Lin, M.C., Mi, H.H., Chen, P.C., 2004. Dry deposition of sulfate- containing particulate at the highway intersection, coastal and suburban areas. Chemosphere 54, 369-378. https://doi.org/10.1016/S0045-6535(03)00655-6
  80. Yao, X., Zhang, L., 2012. Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmos. Environ. 46, 189-194. https://doi.org/10.1016/j.atmosenv.2011.09.081
  81. Yi, S.M., Holsen, T.M., Noll, K.E., 1997. Comparison of dry deposition predicted from models and measured with a water surface sampler. Environ. Sci. Technol. 31, 272-278. https://doi.org/10.1021/es960410g
  82. Yun, H., Yi, S., Kim, Y.P., 2002. Dry deposition fluxes of ambient particulate heavy metals in a small city, Korea. Atmos. Environ. 36, 5449-5458.
  83. Zhang, L., Cheng, I., Wu, Z., Harner, T., Schuster, J., Charland, J., Muir, D., Parnis, J.M., 2015. Dry deposition of polycyclic aromatic compounds to various land covers in the Athabasca oil sands region. J. Adv. Model. Earth Syst. 7, 1339-1350. https://doi.org/10.1002/2015MS000473
  84. Zhang, X., McMurry, P.H., 1992. Evaporative losses of fine particulate nitrates during sampling. Atmos. Environ. Part A, Gen. Top. 26, 3305-3312. https://doi.org/10.1016/0960- 1685(92)90347-N Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos. Environ. 33, 4223-4233. https://doi.org/10.1016/S1352- 2310(99)00186-7
  85. Zufall, M.J., Davidson, C.I., Caffrey, P.F., Ondov, J.M., 1998. Airborne concentrations and dry deposition fluxes of particulate species to surrogate surfaces deployed in southern Lake Michigan. Environ. Sci. Technol. 32, 1623-1628. https://doi.org/10.1021/es9706458