Soil Erosion and Sediment Yield Modelling in the Pra River Basin of Ghana using the Revised Universal Soil Loss Equation (RUSLE) (original) (raw)

Abstract

There has been an upsurge of uncontrolled land use activities in the Pra River Basin in Ghana which are likely to promote surface soil erosion into the fluvial sediment transport system of the basin. The revised universal soil loss equation (RUSLE) was integrated with Geographic Information System (GIS) to model the spatial patterns in soil erosion and sediment yield in 2008 within the catchment. Parameters of the model were formatted as raster layers and multiplied using the raster calculator module in ArcGIS to produce a soil erosion map. The concept of sediment delivery ratio (SDR) was used to determine the annual sediment yield of the catchment by integrating a raster SDR layer with that of the soil erosion map. Predicted soil loss and sediment yield were found to be low due to good soil protective cover by vegetation and tree crops as well as a low relief of the physical landscape. Though, the elements and processes prevailing in the basin in 2008 result in low surface soil ero...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (48)

  1. Akrasi, S. A., 2011. Sediment Discharges from Ghanaian Rivers into the Sea. West African Journal of Applied Ecology 18, 1-13.
  2. Akrasi, S. A., Ansa-Asare, O. D. (2008). Assessing Sediment and Nutrient Transport in the Pra Basin of Ghana. West African Journal of Applied Ecology 13, 1-11.
  3. Akuffo, S.B., 2003. The Imminent Water Supply Crisis in Accra: The Silting Up of the Weija Lake. Accra Mail, Accra.
  4. Amore, E., Modica, C., Nearing, M. A., Santoro, V. C., 2004. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. Journal of Hydrology 293, 100-114.
  5. Arekhi, S., 2008. Evaluating Long-Term Annual Sediment Yield Estimating Potential of GIS Interfaced MUSLE Model on Two Micro-Watersheds. Pakistan Journal of Biological Sciences 11 (2), 270-274.
  6. Bentil, N. L., 2011. Kyebi Water Plant Shut Down as a Result of Evil Effects of Galamsey. Daily Graphic, Accra.
  7. Bonilla, C. A., Reyes, J. L., Magri, A., 2010. Water Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Central Chile. Chilean Journal of Agricultural Research 70 (1), 159-169.
  8. Dickson, K.B., Benneh, G., 1995. A New Geography of Ghana, third ed. Longman, England.
  9. Engel, B., 2003. Estimating Soil Erosion Using RUSLE (Revised Universal Soil Loss Equation) Using ArcView. http://pasture.ecn.purdue.edu/\~abe526/resources1/gisrusle/gisrusle.html (Accessed 20 October, 2011).
  10. Erskine, W. D., Mahmoudzadeh, A., Myers, C. (2002). Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena 49, 271-287.
  11. Ferro, V., Porto, P., 2000. Sediment Delivery Distributed (SEDD) Model. Journal of Hydraulic Engineering 5 (4), 411-422.
  12. Fistikoglu, O., Harmancioglu, N.B., 2002. Integration of GIS and USLE in assessment of soil erosion. Water Resources Management 16, 447-467.
  13. Fu, G., Chen, S., McCool, D. K., 2006. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil & Tillage Research 85, 38-49.
  14. Ghana News Agency, 2005. Owabi Dam to be de-silted, Modern Ghana News: Published. http://www.modernghana.com/news/74031/1/owabi-dam-to-be-de-silted.html (Accessed13 June, 2010).
  15. Ghana Survey Department. Extract from Geographic Information System Data of Ghana. Unpublished Document.
  16. Hagos, D. B., 2004. Distributed Sediment Delivery Ratio Concept for Sediment Yield Modelling. MSc Thesis, University of KwaZulu-Natal Pietermaritzburg, South Africa.
  17. Jain, M. K., Das, D., 2010. Estimation of Sediment Yield and Areas of Soil Erosion and Deposition forWatershed Prioritization using GIS and Remote Sensing. Water Resources Management 24, 2091-2112.
  18. Jain, M. J. K., Kothyari, U. C., 2000. Estimation of Soil Erosion and Sediment Yield using GIS. Hydrological Sciences Journal 45 (5), 771-786.
  19. Jain, M. K., Mishra, S. K., Shah, R. B., 2010. Estimation of Sediment Yield and Areas Vulnerable to Soil Erosion and Deposition in a Himalayan Watershed Using GIS. Current Science 98 (2), 213-221.
  20. Khanchoul, K., Benslama, M., Remini, B., 2010. Regressions on Monthly Stream Discharge to Predict Sediment Inflow to a Reservoir in Algeria. Journal of Geography and Geology 2 (1), 36-47.
  21. Kothyari, U. C., Jain, M.J. K., 1997. Sediment yield estimation using GIS. Hydrol. Sci. J. 42 (6), 833-843.
  22. Kouli, M., Soupios, P., Vallianatos, F., 2008. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, DOI 10.1007/s00254-008-1318-9.
  23. Kusimi, J.M., 2014. Sediment Yield and Bank Erosion Assessment of Pra River Basin. PhD Thesis, University of Ghana, Legon.
  24. Kusimi, J.M., Amisigo, B. A., Banoeng-Yakubo, B. K., 2014. Sediment yield of a forest river basin in Ghana. Catena 123, 225-235.
  25. Kusimi, J.M., 2005. A Geomorphological Study of the Densu Basin. MPhil Thesis, University of Ghana, Legon.
  26. Lal, R., 1985. Soil erosion and sediment transport research in tropical Africa. Hydrological Sciences Journal 30 (2), 239-256.
  27. Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., Kim, K., 2005. GIS-based sediment assessment tool. Catena 64, 61-80.
  28. Mongkolsawat, P., Thirangoon, S., Sriwongsa, S., 1994. Soil Erosion Mapping with Universal Soil Loss equation and GIS, GISdevelopment.net, AARS -ACRS 1994 -Disaster.
  29. Ghana Journal of Geography Vol. 7 (2), 2015
  30. Mutua, B. M., Klik, A., (2006). Estimating Spatial Sediment Delivery Ratio on a Large Rural Catchment. Journal of Spatial Hydrology 6 (1), 64-80.
  31. Nangia, V., Wymar, P., Klang, J., 2010. Evaluation of a GIS-based watershed modeling approach for sediment transport. International Journal of Agricultural and Biological Engineering 3 (3), 43-53.
  32. Oduro-Afriyie, K., 1996. Rainfall erosivity map for Ghana. Geoderma 74, 161-166.
  33. Owusu, G., 2012. A GIS-Based Estimation of Soil Loss in the Densu Basin in Ghana. West African Journal of Applied Ecology 20 (2), 41-52.
  34. Petkovšek, G., Mikoš, M., 2004. Estimating the R factor from daily rainfall datain the sub- Mediterranean climate of southwest Slovenia. Hydrological Sciences Journal 49 (5), 869- 877.
  35. Renard, K. G., Foster, G. R., Weesies, G. A., Porter, J. P., 1991. Revised universal soil loss equation (RUSLE). Journal of Soil Water Conservation 46 (1), 30-33.
  36. Renschler, C.S., Mannaerts, C., Diekkrüger, B., 1999. Evaluating spatial and temporal variability in soil erosion risk-rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena 34, 209-225.
  37. Roose, E. J., 1977. Use of the universal ssil loss equation to predict erosion in West Africa. in Soil Erosion -Prediction and Control: Soil Conservation Society of America. Ankeny, Iowa, 60-73.
  38. Roy, P., 2009. Detection of Land Use/Land Cover Change and its Impact on Soil Erosion, using Satellite Remote Sensing and GIS, Proceedings of International Conference on Energy and Environment, March 19-21, 2009, Enviroenergy ISSN: 2070-3740.
  39. Shamshad, A., Azhari, M.N., Isa, M.H., Wan Hussin, W.M.A., Parida, B.P., 2008. Development of an Appropriate Procedure for Estimation of RUSLE EI30 Index and Preparation of Erosivity Maps for Pulau Penang in Peninsular Malaysia. Catena 72, 423-432.
  40. Silva, R. M., Santos, C. A. G., Montenegro, S. M. G. L., Silva, L. P. E., 2010. Spatial Analysis of Vegetal Cover and Sediment Yield in Tapacurá River Catchment Based on Remote Sensing and GIS. Annals of Warsaw University of Life Sciences -Land Reclamation 42 (1), 5-16.
  41. Silva, A. M., 2004. Rainfall Erosivity Map for Brazil. Catena 57, 251-259.
  42. Silva, R.M., Santos, C.A.G., Silva, L.P., Silva, J.F.C.B.C., 2007. Soil loss prediction in Guaraíra river experimental basin, Paraíba, Brazil based on two erosion simulation models. An Interdisciplinary Journal of Applied Science 2 (3), 19-33.
  43. Smithen, A.A., and Schulze, R.E. (1982). The Spatial Distribution in Southern Africa of Rainfall Erosivity for use in the Universal Soil Loss Equation. Water SA 8 (2), 74-78.
  44. Stone, R. P., Hilborn, D., 2000. Universal Soil Loss Equation (USLE), Ministry of Agriculture Food and Rural Affairs, Ontario, Factsheet Order No. 00-001.
  45. USDA-ARS 2008. DRAFT USER'S REFERENCE GUIDE -Revised Universal Soil Loss Equation Version 2 (RUSLE2), Prepared for USDA-Agricultural Research Service, Washington D.C. http://www.ars.usda.gov/sp2UserFiles/Place/64080510/RUSLE/RUSLE2\_User\_Ref\_Guid e.pdf. (Accessed 8 March, 2011).
  46. Water Resources Commission 2011. Basins -Pra Basin. Retrieved from: http://wrc-gh.org/en/basins/17/pra-basin. (Accessed 14 May, 2013).
  47. Wahyunto, K. D., Abdurachman, A., 2010. Quick Mapping of Soil Erosion Risks by Remote Sensing and GIS in East Java, Indonesia. International Journal of Geoinformatics 6 (2), 27-33.
  48. Wischmeier, W. H., Smith, D., 1978. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. USDA. Agricultural Handbook 537. Washington D.C.