P678 * S-glutathiolation of cMyBP-C reduces its phosphorylation and contributes to impairment of cardiac myocyte contractile function (original) (raw)

S-glutathiolation impairs phosphoregulation and function of cardiac myosin-binding protein C in human heart failure

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2016

Cardiac myosin-binding protein C (cMyBP-C) regulates actin-myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP-C phosphorylation. In our study, reduced site-specific cMyBP-C phosphorylation coincided with increased S-glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease-specific S-glutathiolation sites in cMyBP-C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1-M-C2 was identified and showed enhanced S-glutathiolation in patients. In vitro S-glutathiolation of recombinant cMyBP-C C1-M-C2 occurred predominantly at Cys(249), which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP-C S-glutathiolation, which functionall...

The Interplay between S-Glutathionylation and Phosphorylation of Cardiac Troponin I and Myosin Binding Protein C in End-Stage Human Failing Hearts

Antioxidants, 2021

Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+-activated tension and Ca2+ sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+ sensitivity and maximal tension c...

Protection from the effects of metabolic inhibition and reperfusion in contracting isolated ventricular myocytes via protein kinase C activation

Journal of Molecular and Cellular Cardiology, 2004

The protective effects of the PKC activator Phorbol 12-myristate 13-acetate (PMA) were investigated in electrically field stimulated (EFS) rat isolated ventricular myocytes following 7 min of metabolic inhibition induced by cyanide, iodoacetic acid and substrate removal, followed by reperfusion. PMA reduced reperfusion damage and increased functional recovery (response to EFS) following 10 min reperfusion from 20.0 ± 10.7% of control myocytes to 90.0 ± 7.2% following 5 min PMA pre-treatment (p<0.001). PMA significantly increased the time from the onset of MI before the myocytes failed to respond to EFS from 135 ± 19s in control cells to 200 ± 14s in PMA pre-treated cells (p<0.05). Additionally, there was an increase in the time to rigor with PMA pre-treated cells entering rigor 255 ± 17s after MI compared to 174 ±15s in control cell (p<0.05), indicating a delay in ATP depletion. During MI PMA pre-treated cells showed a significantly smaller increase in [Ca 2+ ]i compared to control myocytes. Following reperfusion the majority of PMA pre-treated myocytes recovered calcium transients in response to EFS and diastolic Ca 2+ levels not significantly different to those seen prior to metabolic inhibition. Activation of PKC is thought to involve translocation to the particulate fraction. Our results demonstrate the presence of PKC-a, b, c, d, e, i, k/f in rat ventricular myocytes, all of which translocate to the membrane in response to PMA.

Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts

Journal of Molecular and Cellular Cardiology, 2013

Introduction: Cardiac myosin binding protein-C (cMyBP-C) becomes dephosphorylated in the failing heart and reduced phosphorylation-dependent regulation of cMyBP-C has been implicated in contractile dysfunction. To date, several phosphorylation sites have been identified for human cMyBP-C; however, a comprehensive characterization of the cMyBP-C phosphoproteome is lacking. This study aimed to characterize the cMyBP-C phosphoproteome using two different proteomic-based methods in explanted donor and end-stage failing hearts. Methods: The first approach used to characterize the cMyBP-C phosphoproteome employed a strong-cation exchange chromatography (SCX) fractionation method (10 pooled samples, technical replicates = 4) and the second employed a sodium dodecylsulfate polyacrylamide gel electrophoresis method (n = 10; technical replicates = 2). Each subsequently underwent titanium dioxide (TiO 2 ) affinity chromatography to enrich for the tryptic phosphopeptides, which were analyzed using an LTQ-Orbitrap mass spectrometer. Moreover, recombinant C0-C2 fragment of mouse cMyBP-C incubated with PKA, PKC, CaMKII and CK2 was analyzed to identify the kinases involved with phosphorylation of cMyBP-C. Results: Seventeen phosphorylation sites on cMyBP-C were identified in vivo, with the majority localized in the N-terminal domains C0-C2. The three most abundant phosphorylated sites, Ser284, Ser286 and Thr290, are located in the regulatory M-domain of cMyBP-C. Ser284 showed a significant reduction in phosphorylation in HF. Conclusion: This study demonstrates that cMyBP-C harbors more phosphorylation sites than previously known, with a total of 17 (9 novel) identified phosphorylation sites in vivo. Most sites were primarily located within the N-terminal side of the protein. The most highly phosphorylated site on cMyBP-C was Ser284 and this site showed decreased phosphorylation in the failing heart, which implicates importance for fine-tuning contractility. To date, the functional importance of Ser286 and Thr290 is unknown. In addition, 16 sites were identified after in vitro kinase incubation. The data have been deposited to the ProteomeXchange with identifier PXD000158.

GSK3β Phosphorylates Newly Identified Site in the Proline-Alanine–Rich Region of Cardiac Myosin–Binding Protein C and Alters Cross-Bridge Cycling Kinetics in Human

Circulation Research, 2012

Rationale: Cardiac myosin–binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. Objective: To identify and characterize additional phosphorylation sites in human cMyBP-C. Methods and Results: Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine–rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3β (GSK3β) as the most likely kinase to phosphory...

Acceleration of Crossbridge Kinetics by Protein Kinase A Phosphorylation of Cardiac Myosin Binding Protein C Modulates Cardiac Function

Circulation Research, 2008

Normal cardiac function requires dynamic modulation of contraction. ␤1-Adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k rel (s-1), and delayed force development, k df (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k rel and k df similar to WT myocardium, but, unlike WT, k rel and k df were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction.

Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents

Journal of Biological Chemistry, 2020

The contraction and relaxation of the heart is controlled by stimulation of the b1adrenoceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for A-kinase anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors the experimental nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of b1-AR activation, but was atbolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.

S-Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca2+ Sensitivity in Intact Cardiomyocytes

Antioxidants & Redox Signaling, 2015

Aims: The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. Results: Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca 2+ sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 lM GSNO also decreased Ca 2+ sensitivity of contraction and 10 lM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (‡100 lM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca 2+ sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 lM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. Innovation and Conclusions: Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations. Antioxid. Redox Signal. 23, 1017-1034.