Identification of candidate biomarkers of brain damage in a mouse model of closed head injury: a metabolomic pilot study (original) (raw)
We aim to identify candidate brain biomarkers for, and to elucidate the pathophysiology of closed traumatic brain injury (TBI). Nuclear magnetic resonance (NMR) based metabolomic analysis was performed on the whole brain of mice undergoing TBI using a validated technique. There were 10 TBI mice compared to 8 sham operated controls. A total of 45 metabolites were evaluated. There was a statistically significant alteration in concentrations of 29 metabolites in TBI brains as compared to controls (FDR \0.05). Profound disturbances of several metabolic pathways (FDR\1E-07), including pathways associated with purine, alanine, aspartate and glutamine and glutathione metabolism were observed. Also, a significant elevation in glutamate (the main excitatory neurotransmitter) and depression of GABA (the main inhibitory neurotransmitter) was observed. Four metabolites, ADP, AMP, NAD?, and IMP were the most important indicators of TBI, relative to normal controls. All were elevated in the TBI mice. A combination of these 4 biomarkers produced a perfect predictor of TBI status, AUC (95 % CI) = 1.0 (1.0, 1.0). We also detected significant disturbances in mitochondrial function, energy metabolism, neurotransmitter metabolism and other important biochemical pathways in TBI mouse brains. Further studies to assess the utility of metabolomics to detect and classify the severity of and assess the prognosis of TBI is warranted.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact