Neuroendocrinology of Energy Balance (original) (raw)
Related papers
Sixteen years and counting: an update on leptin in energy balance
The Journal of clinical investigation, 2011
Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.
The Role of Leptin in the Regulation of Energy Balance and Adiposity
Journal of Neuroendocrinology, 2008
Since its discovery, leptin (a 167-amino acid product of the OB gene) has quickly moved to the forefront as an important hormone for regulation of energy balance. It closes a feedback loop from adipose tissue to hypothalamic neuropeptide-containing neural circuitry involved in regulation of food intake and neuroendocrine/autonomic out¯ow. While increased central leptin signalling reduces adiposity via a reduction in food intake, it also has remarkable metabolic effects that promote leanness, independent of food intake. These include: (i) increased energy expenditure, (ii) in-place degradation of fat, and (iii) increased thermogenesis. Hypothalamic neurones that synthesize corticotropin releasing hormone and melanocortins (i.e. a-melanocyte-stimulating hormone and agouti-related protein) are likely effector pathways that mediate the anorexigenic and metabolic effects of leptin. Activation of sympathetic out¯ow (via neuropeptidergic effector pathways of central leptin) to a number of tissues that store fat might be an important mechanism through which these peripheral metabolic effects are elicited. It is proposed that these peripheral metabolic effects contribute to the satiating properties of leptin.
J Neuroendocrinol, 2008
Since its discovery, leptin (a 167-amino acid product of the OB gene) has quickly moved to the forefront as an important hormone for regulation of energy balance. It closes a feedback loop from adipose tissue to hypothalamic neuropeptide-containing neural circuitry involved in regulation of food intake and neuroendocrine/autonomic out¯ow. While increased central leptin signalling reduces adiposity via a reduction in food intake, it also has remarkable metabolic effects that promote leanness, independent of food intake. These include: (i) increased energy expenditure, (ii) in-place degradation of fat, and (iii) increased thermogenesis. Hypothalamic neurones that synthesize corticotropin releasing hormone and melanocortins (i.e. a-melanocyte-stimulating hormone and agouti-related protein) are likely effector pathways that mediate the anorexigenic and metabolic effects of leptin. Activation of sympathetic out¯ow (via neuropeptidergic effector pathways of central leptin) to a number of tissues that store fat might be an important mechanism through which these peripheral metabolic effects are elicited. It is proposed that these peripheral metabolic effects contribute to the satiating properties of leptin.
Leptin Regulates Energy Balance and Motivation Through Action at Distinct Neural Circuits
Biological Psychiatry, 2011
BACKGROUND-Overconsumption of calorically dense foods contributes substantially to the current obesity epidemic. The adiposity hormone leptin has been identified as a potential modulator of reward-induced feeding. The current study asked whether leptin signaling within the lateral hypothalamus (LH) and midbrain is involved in effort-based responding for food rewards and/or the modulation of mesolimbic dopamine.
Molecular Metabolism, 2014
Objective: Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) thermogenesis. Intra-DMH leptin injections also activate sympathetic outflow to BAT, but whether such effects are mediated directly via DMH/DHA LepRb neurons and whether this is physiologically relevant for whole body energy expenditure and body weight regulation has yet to be determined. Methods: We used pharmacosynthetic receptors (DREADDs) to selectively activate DMH/DHA LepRb neurons. We further deleted LepRb with virally driven cre-recombinase from DMH/DHA neurons and determined the physiological importance of DMH/DHA LepRb neurons in whole body energy homeostasis. Results: Neuronal activation of DMH/DHA LepRb neurons with DREADDs promoted BAT thermogenesis and locomotor activity, which robustly induced energy expenditure (p < 0.001) and decreases body weight (p < 0.001). Similarly, intra-DMH/DHA leptin injections normalized hypothermia and attenuated body weight gain in leptin-deficient ob/ob mice. Conversely, ablation of LepRb from DMH/DHA neurons remarkably drives weight gain (p < 0.001) by reducing energy expenditure (p < 0.001) and locomotor activity (p < 0.001). The observed changes in body weight were largely independent of food intake. Conclusion: Taken together, our data highlight that DMH/DHA LepRb neurons are sufficient and necessary to regulate energy expenditure and body weight.
Neuroscience and biobehavioural reviews, 2001
In small rodents there is compelling evidence of a lipostatic system of body mass regulation in which peripheral signals of energy storage are decoded in the hypothalamus. The ability of small mammals to defend an appropriate mass against imposed energy imbalance has implicated hypothalamic neuroendocrine systems in body mass regulation. The effect of the neuropeptide systems involved in this regulation is primarily compensatory. However, small mammals can also effect changes in the level of body mass that they will defend, as exempli®ed by seasonal species. Regulatory control over fat mass may be relatively loose in humans; the sizes of long-term storage depots may not themselves be regulated, but rather may be a consequence of temporal variations in the matching of supply and demand. Whether food intake is regulated to match energy demand, or to match demand and to regulate storage, it is clear that physiological defects or genetic variation in hypothalamic and peripheral feedback systems will have profound implications for fat storage. Study of mechanisms implicated in energy homeostasis in laboratory rodents is likely to continue to identify targets for pharmacological manipulation in the management of human obesity. q
Recent patents on CNS drug discovery, 2006
Obesity has reached epidemic proportions across the developed world. Even though there have been numerous scientific advances in terms of the understanding of the regulation of energy homeostasis, few novel anti-obesity drugs have emerged. Furthermore, those that are available have limited efficacy in producing and maintaining a weight loss beyond 10%. This is partly attributable to the complex neuronal circuitry at play within the central nervous system and periphery, which acts to regulate food intake and energy expenditure. This article will focus on a selection of the many products (peptides, neurotransmitters and others) such as endocannabinoids, Neuropeptide Y, Orexins, Melanin-Concentrating Hormone, Melanocortins, Cocaine and Amphetamine Regulated Transcript and Serotonin, expressed within the brain, that have been shown to influence energy balance. The true relevance of many of these to the regulation of human energy balance remains uncertain, but some novel anti-obesity dru...
PAPER Regulation of appetite: role of leptin in signalling systems for drive and satiety
BACKGROUND: The healthy regulation of appetite involves a balance between excitatory (drive) and inhibitory (satiety) processes. For many years research has concentrated on the identification of signalling systems that mediate satiety to the relative exclusion of drive-inducing biological events. However, the so-called long-term regulation of body weight has recently been given substance by the identification of a chemical signal believed to link the brain with adipose tissue stores. ANALYSIS: This signal, leptin, is in position to modulate the expression of a drive to eat. Studies on the relationship between leptin and perceived hunger, and on the eating behaviour of leptin-deficient individuals, are consistent with the intervention of leptin in a drive system. The contrast between the roles of leptin and serotonin in appetite regulation reflects the difference between drive-signalling and satiety signalling processes. CONCLUSION: It is proposed that leptin modulates the drive signals arising from the metabolic demand for energy but also shows some properties of a post-prandial satiety signal.
Central Nervous System Effects of Leptin
Trends in Endocrinology & Metabolism, 1998
Obesity is a risk factor associated with a myriad of health problems including hypertension, cardiovascular disease, infertility and non-insulin-dependent diabetes mellitus (NIDDM). This nutritional disorder, resulting from disequilibrium between energy expenditure and ingestive behavior, is a cause of significant morbidity, and is becoming more common in the developed world . For this reason, the etiology of obesity has been investigated intensely, in order to provide information necessary for the development of therapeutic approaches for its treatment.
Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation
2011
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.