3D printing of Continuous Fiber Reinforced Composites: A Review of the Processing, Pre- and Post-Processing Effects on Mechanical Properties (original) (raw)

3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review

Materials, 2021

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military v...

3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques

Polymers, 2022

Fused Deposition Modelling (FDM) is an actively growing additive manufacturing (AM) technology due to its ability to produce complex shapes in a short time. AM, also known as 3-dimensional printing (3DP), creates the desired shape by adding material, preferably by layering contoured layers on top of each other. The need for low cost, design flexibility and automated manufacturing processes in industry has triggered the development of FDM. However, the mechanical properties of FDM printed parts are still weaker compared to conventionally manufactured products. Numerous studies and research have already been carried out to improve the mechanical properties of FDM printed parts. Reinforce polymer matrix with fiber is one of the possible solutions. Furthermore, reinforcement can enhance the thermal and electrical properties of FDM printed parts. Various types of fibers and manufacturing methods can be adopted to reinforce the polymer matrix for different desired outcomes. This review emphasizes the fiber types and fiber insertion techniques of FDM 3D printed fiber reinforcement polymer composites. A brief overview of fused deposition modelling, polymer sintering and voids formation during FDM printing is provided, followed by the basis of fiber reinforced polymer composites, type of fibers (synthetic fibers vs. natural fibers, continuous vs. discontinuous fiber) and the composites’ performance. In addition, three different manufacturing methods of fiber reinforced thermoplastics based on the timing and location of embedding the fibers, namely ‘embedding before the printing process (M1)’, ‘embedding in the nozzle (M2)’, and ‘embedding on the component (M3)’, are also briefly reviewed. The performance of the composites produced by three different methods were then discussed.

Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing

Materials and Manufacturing Processes, 2020

Continuous carbon-fiber-reinforced acrylonitrile butadiene styrene (ABS) has been manufactured by a method based on fused deposition modeling (FDM). Before 3D printing, the carbon fibers pass through an ABS-acetone bath to prepare solution impregnated fibers (prepregs). Continuous fiber-reinforced thermoplastic composites (CFRTCs) were printed by feeding carbon fiber prepregs and ABS filament, simultaneously into a special single port nozzle. By varying print conditions such as nozzle diameter, layer height, and print speed, composite specimens were printed with different qualities. The visual evaluation of printed composites was used to determine a process window for stable or unstable CFRTC printing. In the obtained process window, four regions were observed including fiber fuzzing or tearing instability, fiber twisting instability, low quality stable print and high quality stable print. The optimum condition to print CFRTCs was found and then specimens were printed to investigate mechanical properties under the optimal printing condition. The mechanical and morphological properties of visual-optimized 3D-printed composites, without any fiber fuzzing, tearing or twisting were investigated. The results showed that tensile, flexural, and interlaminar shear strength of 3D-printed ABS-carbon CFRTCs have increased 313%, 121%, and 54%, respectively, when compared with the neat ABS 3D-printed samples.

Research into Specific Mechanical Properties of Composites Produced by 3D-Printing Additive Continuous-Fiber Fabrication Technology

Materials

This paper introduces novel research into specific mechanical properties of composites produced by 3D printing using Continuous-Fiber Fabrication (CFF). Nylon (Onyx) was used as the composite base material, while carbon constituted the reinforcement element. The carbon fiber embedment was varied in selected components taking values of 0°, 45°, 90°, and 135° for parts undergoing tensile testing, while one specific part type was produced combining all angles. Carbon-fiber-free components with 100% and 37% fillings were also produced for comparison purposes. Parts undergoing the Charpy impact test had the fibers deposited at angles of 0° and 90°, while one part type was also produced combining the four angles mentioned before. Carbon-fiber-free parts with 100% and 37% fillings were also produced for comparison purposes as with the first part. The Markforged MARK TWO 3D printer was used for printing the parts. These were subsequently scanned in the METROTOM 1500 computed tomography and ...

Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties

Carbon fiber-reinforced plastic composites have been intensively used for many applications due to their attractive properties. The increasing demand of carbon fiber-reinforced plastic composites is driving novel manufacturing processes to be in short manufacturing cycle time and low production cost, which is difficult to realize during carbon fiber-reinforced plastic composites fabrication in common molding processes. Fused deposition modeling, as one of the additive manufacturing techniques, has been reported for fabricating carbon fiber-reinforced plastic composites. The process parameters used in fused deposition modeling of carbon fiber-reinforced plastic composites follow those in fused deposition modeling of pure plastic materials. After adding fiber reinforcements, it is crucial to investigate proper fused deposition modeling process parameters to ensure the quality of the carbon fiber-reinforced plastic parts fabricated by fused deposition modeling. However, there are no reported investigations on the effects of fused deposition modeling process parameters on the mechanical properties of carbon fiber-reinforced plastic composites. In the experimental investigations of this paper, carbon fiber-reinforced plastic composite parts are fabricated using a fused deposition modeling machine. Tensile tests are conducted to obtain the tensile properties. The effects of fused deposition modeling process parameters on the tensile properties of fused deposition modeling-fabricated carbon fiber-reinforced plastic composite parts are investigated. The fracture interfaces of the parts after tensile testing are observed by a scanning electron microscope to explain material failure modes and reasons.

Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review

Journal of Composites Science

Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the op...

FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments

Polymers

Fused deposition modelling (FDM) is one of the fastest-growing additive manufacturing methods used in printing fibre-reinforced composites (FRC). The performances of the resulting printed parts are limited compared to those by other manufacturing methods due to their inherent defects. Hence, the effort to develop treatment methods to overcome these drawbacks has accelerated during the past few years. The main focus of this study is to review the impact of those defects on the mechanical performance of FRC and therefore to discuss the available treatment methods to eliminate or minimize them in order to enhance the functional properties of the printed parts. As FRC is a combination of polymer matrix material and continuous or short reinforcing fibres, this review will thoroughly discuss both thermoplastic polymers and FRCs printed via FDM technology, including the effect of printing parameters such as layer thickness, infill pattern, raster angle and fibre orientation. The most commo...

3D printed fiber reinforced polymer composites - Structural analysis

Composites Part B: Engineering, 2019

In this research, mechanical and structural properties of Continuous Fiber Reinforced Additively Manufactured (CFRAM) components are studied. Structural analysis is performed to understand the failure behaviour of CFRAM components. Based on the SEM analysis of the tested parts, correlations between results of mechanical test and microstructure of the parts have been investaged. CFRAM components are lightweight yet strong materials with a wide range of potential applications in auto industry, aerospace, sport goods, and medical tools. CFRAM components benefit from both cutting-edge 3D printing technology and fiber reinforcement to improve mechanical properties. Produced parts have lightweight compared with metals, strong mechanical properties, and short manufacturing time. In addition, thermoplastic polymer used for CFRAM components makes product recyclable. In this study, samples were printed using Markforged Mark Two printer and the effect of the fiber type, fiber orientations, infill density, and temperatures on tensile, fatigue, and creep properties were investigated. Carbon fiber (CF), fiberglass (FG), and Kevlar were used as reinforcing agents, and nylon as the base material. Microstructural analysis was conducted to investigate the fracture mechanism, morphology, and printing quality of the specimens. It was observed that the main failing mechanisms for CFRAM components are fiber pull-out,fiber breakage, and delamination. Further, it was understood that there is a correlation between the fiber stacking density and mechanical properties. Overall, the information provided in this study reports a unique knowledge base about the mechanical and structural behaviours of the components built with the CFRAM technology.

Additive manufacturing of fused deposition modeling for carbon fiber-PLA (CF-PLA) composites: The effects of tensile and flexural properties of process parameters

Functional Composites and Structures, 2021

In this paper the effect of process parameters on the tensile and flexural properties has been analyzed. We have used commercially available FDM 3D printer and material (Carbon fiber -PLA). When various processing parameters, especially when no linear processing parameters are defined, the complete factor design of experiments (DOE) is hard to research. Furthermore, a large number of samples are needed to completely exploit the exact processing parameters. The key effects of four processing parameters for the FDM process, i.e. layer height, infill density, printing speed and infill pattern, are examined in this document in the DOE of Taguchi. The mechanical characteristics of the fabricated FDM components express the power of the processing parameters. We have used the Taguchi L9 range of 9 runs with three specimens each to present the work, so 54 different processes were used to make a total of 54 specimens. In comparison to the 3D CAD model, the measurements of the manufactured sp...

Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling

Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.