Rapid diagnostic testing platform for iron and vitamin A deficiency (original) (raw)
Related papers
Biosensors and Bioelectronics, 2017
Iron deficiency (ID) is an urgent public health problem that has devastating effects on maternal and child health. However, due to poor access and affordability, screening and diagnosis for ID is often limited to proxy hemoglobin measurements alone. Here, we report the development and validation of ironPhone, a mobile-device coupled portable diagnostics for quantification of serum ferritin concentrations, an iron status biomarker, within a few minutes, from a drop of fingerprick blood. The ironPhone diagnostic platform comprises of a smartphone accessory, an app, and a disposable lateral flow immunoassay test strip to quantify serum ferritin. For initial validation in the lab, we optimized and evaluated the performance of ironPhone with known ferritin concentrations in spiked buffer and serum samples. Following lab validation, we performed a human validation by collecting fingerprick whole blood samples from 20 participants to assess iron status using ironPhone and compared the results with the laboratory standard IMMULITE 2000 analyzer. Findings from the ironPhone for the buffer and spiked serum samples provided a calibration curve with R 2 values of 0.97 (n=27) and 0.93 (n=12), respectively. On comparison with the laboratory standard IMMULITE analyzer in whole blood samples, a correlation of 0.92 (P < 0.0001) was observed with a sensitivity of over 90% for predicting ID (ferritin < 15.0 µg/L) via the ironPhone, demonstrating its promise for iron status assessment at the point-of-care.
Disposable platform provides visual and color-based point-of-care anemia self-testing
The Journal of clinical investigation, 2014
Anemia, or low blood hemoglobin (Hgb) levels, afflicts 2 billion people worldwide. Currently, Hgb levels are typically measured from blood samples using hematology analyzers, which are housed in hospitals, clinics, or commercial laboratories and require skilled technicians to operate. A reliable, inexpensive point-of-care (POC) Hgb test would enable cost-effective anemia screening and chronically anemic patients to self-monitor their disease. We present a rapid, stand-alone, and disposable POC anemia test that, via a single drop of blood, outputs color-based visual results that correlate with Hgb levels. We tested blood from 238 pediatric and adult patients with anemia of varying degrees and etiologies and compared hematology analyzer Hgb levels with POC Hgb levels, which were estimated via visual interpretation using a color scale and an optional smartphone app for automated analysis. POC Hgb levels correlated with hematology analyzer Hgb levels (r = 0.864 and r = 0.856 for visual ...
The American Journal of Clinical Nutrition, 2020
Background Accurate assessment of iron and vitamin A status is needed to inform public health decisions, but most population-level iron and vitamin A biomarkers are independently influenced by inflammation. Objectives We aimed to assess the reproducibility of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) regression approach to adjust iron [ferritin, soluble transferrin receptor (sTfR)] and vitamin A [retinol-binding protein (RBP), retinol] biomarkers for inflammation (α-1-acid glycoprotein and C-reactive protein). Methods We conducted a sensitivity analysis comparing unadjusted and adjusted estimates of iron and vitamin A deficiency using the internal-survey regression approach from BRINDA phase 1 (16 surveys in children, 10 surveys in women) and 13 additional surveys for children and women (BRINDA phase 2). Results The relations between inflammation and iron or vitamin A biomarkers were statistically significant except for vitamin A biomarke...
An assessment of dried blood-spot technology for identifying iron deficiency
Blood, 1998
The present study was undertaken to assess the feasibility of using ferritin and transferrin receptor measurements on dried capillary blood spots to identify iron deficiency (ID) in public health surveys. Measurements on serum and blood spots prepared from venous blood were performed in 71 healthy subjects, 41 of whom were iron-replete and 30 who had ID, either without (n = 20) or with (n = 10) anemia. Parallel measurements were performed on hemolyzed whole blood and washed hemolyzed red blood cells to assess the erythrocyte contribution of ferritin and transferrin receptor to dried blood samples. The concentration of ferritin in dried blood samples was threefold higher than serum assays due to the release of ferritin from hemolyzed erythrocytes, which diminished the usefulness of ferritin measurements for detecting ID. On the other hand, there was negligible erythrocyte contribution to the measurement of transferrin receptor in dried blood spots. The most sensitive parameter in dri...
A Simple and Cheap Device for Colorimetric Determination of Serum Iron
Journal of the Chinese Chemical Society, 2010
A simple and cheap device for colorimetric determination of serum iron and TIBC (total iron-binding capacity) was devised. The proposed device employs an LED as a light source and a common light dependent resistor (LDR) as a detector. This device functions on the basis of the light intensity received by LDR, connected to a digit multimeter, yielding resistance readings. The serum, standard, and blank solutions were prepared according to the kits instructions and introduced into the colorimeter with a disposable syringe. The iron content of the serum was calculated from the resistance difference of serum and standard solutions. The precision of the method was assessed with two commercially available serum-based chemistry controls. The values obtained with the proposed device indicated that the serum iron concentrations correlated well with the values obtained with the commercial automated analyzer. The calibration graph was linear for iron concentrations up to 90 mmol/L (500 mg/dL). The proposed fabricated colorimeter is considerable cheaper, requires smaller sample volumes, and is suitable for serum iron assay.
Smartphone app for non-invasive detection of anemia using only patient-sourced photos
Nature Communications
We introduce a paradigm of completely non-invasive, on-demand diagnostics that may replace common blood-based laboratory tests using only a smartphone app and photos. We initially targeted anemia, a blood condition characterized by low blood hemoglobin levels that afflicts >2 billion people. Our app estimates hemoglobin levels by analyzing color and metadata of fingernail bed smartphone photos and detects anemia (hemoglobin levels <12.5 g dL −1) with an accuracy of ±2.4 g dL −1 and a sensitivity of 97% (95% CI, 89-100%) when compared with CBC hemoglobin levels (n = 100 subjects), indicating its viability to serve as a non-invasive anemia screening tool. Moreover, with personalized calibration, this system achieves an accuracy of ±0.92 g dL −1 of CBC hemoglobin levels (n = 16), empowering chronic anemia patients to serially monitor their hemoglobin levels instantaneously and remotely. Our on-demand system enables anyone with a smartphone to download an app and immediately detect anemia anywhere and anytime.
Classic and emergent indicators for the assessment of human iron status
Critical Reviews in Food Science and Nutrition, 2020
Iron deficiency is the leading cause of anemia, a significant global public health problem. Different methods exist for assessing iron nutritional status, including laboratory tests that focus on storage, transportation, and iron functional compartment parameters. Classical markers such as bone marrow, serum iron, ferritin, hemoglobin, erythrocyte parameters, transferrin, transferrin receptors, and zinc protoporphyrin are discussed in this review. Additional parameters calculated from these indicators, including transferrin saturation, ferritin index and Thomas plot, and some emergent parameters such as hepcidin, erythroferrone, and low hemoglobin density are also discussed. There is no a single indicator for assessing iron nutritional status. Therefore, the use of more than one indicator may be the best practice to obtain the correct diagnosis, also considering the influence of inflammation/infection on many of these indicators. The constant validation of the current parameters, the improvement of assessment methods, and the identification of new indicators will be the key to refine the assessment of iron nutritional status and the right choice of treatment for its improvement.
Robust measurement of vitamin A status in plasma and blood dried on paper
Prostaglandins, leukotrienes, and essential fatty acids, 2015
Vitamin A deficiency is the leading cause of preventable blindness in children and increases the risk of disease and death from severe infections. In addition, fat soluble vitamin A and associated retinoids directly regulate the expression of genes involved in fatty acid metabolism. Conventional methods for measuring vitamin A involve venipuncture, centrifugation and refrigeration all of which make measuring vitamin A in nutritional surveys expensive. We aimed to develop a simple and robust system for measurement of retinol (biomarker for vitamin A) using dried blood spot (DBS) samples. Low recoveries and inconsistent results reported by others were found to be due to poor extraction efficiency rather than retinol instability. Maintaining acid conditions during extraction resulted in recoveries >95% with <6.5% of coefficient of variation. Using isocratic high performance liquid chromatography, separation was achieved in <3.5min. Detector response was linear (R(2)=0.9939) wi...
Analytical Chemistry, 2014
In this paper, we report, for the first time, the use of a smartphone to image and quantify biochemiluminescence coupled biospecific enzymatic reactions to detect analytes in biological fluids. Using low-cost three-dimensional (3D) printing technology, we fabricated a smartphone accessory and a minicartridge for hosting biospecific reactions. As a proof-of-principle, we report two assays: a bioluminescence assay for total bile acids using 3α-hydroxyl steroid dehydrogenase coimmobilized with bacterial luciferase system and a chemiluminescence assay for total cholesterol using cholesterol esterase/cholesterol oxidase coupled with the luminol−H 2 O 2 −horseradish peroxidase system. These assays can be performed within 3 min in a very straightforward manner and provided adequate analytical performance for the analysis of total cholesterol in serum (limit of detection (LOD) = 20 mg/dL) and total bile acid in serum and oral fluid (LOD = 0.5 μmol/L) with a reasonable accuracy and precision. Smartphone-based biochemiluminescence detection could be thus applied to a variety of clinical chemistry assays.