Histone biotinylation inCandida albicans (original) (raw)

Histone biotinylation inCandida albicans

Fems Yeast Research, 2013

Candida albicans is an opportunistic fungal pathogen in humans. It is a polymorphic fungus: it can live as yeasts, hyphae, or pseudohyphae. Biotin is required for cell growth and fatty acid metabolism because it is used as a cofactor for carboxylases such as acetyl-CoA carboxylase, and pyruvate carboxylase. In addition, we have discovered that biotin is used to modify histones in C. albicans. Biotinylation was detected by Western blots using a monoclonal antibiotin HRP-conjugated antibody as well as with qTOF and LC/MS/MS mass spectrometry. As a precaution, the antibiotin antibody was dialyzed against neutravidin prior to use. During this study, we observed that three histones, H2A, H2B, and H4, were biotinylated at many lysine residues in an apparently nonsite-specific manner. Roughly, equivalent levels of acetylation, methylation, and phosphorylation were found in histones from biotin-replete and biotin-starved cells, but histone biotinylation was only observed for cells grown in excess biotin. The function of histone biotinylation in C. albicans is still unknown but, because C. albicans is a natural biotin auxotroph, a storage reservoir for biotin is attractive. Techniques used to detect histone biotinylation in C. albicans did not detect any histone biotinylation in Saccharomyces cerevisiae.

Histone biotinylation in \u3ci\u3eCandida albicans\u3c/i\u3e

2013

Candida albicans is an opportunistic fungal pathogen in humans. It is a polymorphic fungus: it can live as yeasts, hyphae, or pseudohyphae. Biotin is required for cell growth and fatty acid metabolism because it is used as a cofactor for carboxylases such as acetyl-CoA carboxylase, and pyruvate carboxylase. In addition, we have discovered that biotin is used to modify histones in C. albicans. Biotinylation was detected by Western blots using a monoclonal antibiotin HRP-conjugated antibody as well as with qTOF and LC/MS/MS mass spectrometry. As a precaution, the antibiotin antibody was dialyzed against neutravidin prior to use. During this study, we observed that three histones, H2A, H2B, and H4, were biotinylated at many lysine residues in an apparently nonsite-specific manner. Roughly, equivalent levels of acetylation, methylation, and phosphorylation were found in histones from biotin-replete and biotin-starved cells, but histone biotinylation was only observed for cells grown in ...

Histone modifications in the yeast S. cerevisiae

Nucleic Acids Research, 1981

The content of the acetylated histone species associated with the highly transcriptionally active chromatin of yeast was examined. We found yeast chromatin to contain very high levels of the acetylated species for histones H3, H4 and possibly the H2B variants, H2B-1 and H2B-2. Sixty-three percent of the histone H4 species was represented by the di-, triand tetra-acetylated forms. These results make yeast chromatin among the most highly acetylated of any chromatins reported thus far. In addition, the results are consistent with the idea that hyperacetylation of histones allows chromatin to be transcribed at an increased rate.

Low Dosage of Histone H4 Leads to Growth Defects and Morphological Changes in Candida albicans

PLoS ONE, 2010

Chromatin function depends on adequate histone stoichiometry. Alterations in histone dosage affect transcription and chromosome segregation, leading to growth defects and aneuploidies. In the fungal pathogen Candida albicans, aneuploidy formation is associated with antifungal resistance and pathogenesis. Histone modifying enzymes and chromatin remodeling proteins are also required for pathogenesis. However, little is known about the mechanisms that generate aneuploidies or about the epigenetic mechanisms that shape the response of C. albicans to the host environment. Here, we determined the impact of histone H4 deficit in the growth and colony morphology of C. albicans. We found that C. albicans requires at least two of the four alleles that code for histone H4 (HHF1 and HHF22) to grow normally. Strains with only one histone H4 allele show a severe growth defect and unstable colony morphology, and produce faster-growing, morphologically stable suppressors. Segmental or whole chromosomal trisomies that increased wild-type histone H4 copy number were the preferred mechanism of suppression. This is the first study of a core nucleosomal histone in C. albicans, and constitutes the prelude to future, more detailed research on the function of histone H4 in this important fungal pathogen.

Analysis of histones from the yeast Saccharomyces carlsbergensis

The Biochemical journal, 1979

Basic chromosomal proteins were isolated from the chromatin of the yeast Saccharomyces carlsbergensis by extraction with H2SO4 and were purified by ion-exchange chromatography. Electrophoresis of the purified fraction on acetic acid/urea gels revealed the presence of four main components. These four proteins were identified as histones H2A, H2B, H3 and H4 on the basis of their amino acid composition, molecular weight and solubility properties, all of which are very similar to the corresponding properties of the various histone proteins from other eukaryotic organisms. A fifth basic protein could be isolated from yeast chromatin by extraction with HClO4. The available evidence indicates this protein to be an H1-type histone. Yeast thus appears to contain a complete set of histone proteins which are strongly homologous to the histones occurring in higher eukaryotes.

Faculty of 1000 evaluation for Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy

F1000 - Post-publication peer review of the biomedical literature, 2010

Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections. H3K56ac is an abundant post-translational modification found in newly synthesized H3 molecules deposited throughout the genome during DNA replication 1,2. Originally discovered in yeast 2-6 , H3K56ac also occurs in human cells 7-10. In Saccharomyces

Accelerated nuclei preparation and methods for analysis of histone modifications in yeast

Methods (San Diego, Calif.), 2006

The continuing identification of new histone post-translational modifications and ongoing discovery of their roles in nuclear processes has increased the demand for quick, efficient, and precise methods for their analysis. In the budding yeast Saccharomyces cerevisiae, a variety of methods exist for the characterization of histone modifications on a global scale. However, a wide gap in preparation time and histone purity exists between the most widely used extraction methods, which include a simple whole cell extraction (WCE) and an intensive histone extraction. In this work we evaluate various published WCE buffers for their relative effectiveness in the detection of histone modifications by Western blot analysis. We also present a precise, yet time-efficient method for the detection of subtle changes in histone modification levels. Lastly, we present a protocol for the rapid small-scale purification of nuclei that improves the performance of antibodies that do not work efficiently in WCE. These new methods are ideal for the analysis of histone modifications and could be applied to the analysis and improved detection of other nuclear proteins.

Yeast inner histones and the evolutionary conservation of histone-histone interactions

Biochemistry, 1978

The inner histones of the yeast, Saccharomyces cereuisiae, have been isolated and identified by their amino acid compositions. H4 appears to be close to its calf and pea counterparts. H2a, H2b, and H3 have diverged. The isolation of the histones was accomplished by consecutive slab-gel fractionation, and a number of novel features of the method s t u d i e s on the histones of Saccharomyces cereuisiae, the common baker's yeast, began more than 10 years ago (Tonino