Working watersheds and coastal systems: research and management for a changing future (original) (raw)
Related papers
A Smart Cache Content Update Policy Based on Deep Reinforcement Learning
Wireless Communications and Mobile Computing, 2020
This paper proposes a DRL-based cache content update policy in the cache-enabled network to improve the cache hit ratio and reduce the average latency. In contrast to the existing policies, a more practical cache scenario is considered in this work, in which the content requests vary by both time and location. Considering the constraint of the limited cache capacity, the dynamic content update problem is modeled as a Markov decision process (MDP). Besides that, the deep Q-learning network (DQN) algorithm is utilised to solve the MDP problem. Specifically, the neural network is optimised to approximate the Q value where the training data are chosen from the experience replay memory. The DQN agent derives the optimal policy for the cache decision. Compared with the existing policies, the simulation results show that our proposed policy is 56%–64% improved in terms of the cache hit ratio and 56%–59% decreased in terms of the average latency.
Applied Sciences
Dynamic adaptive video streaming over HTTP (DASH) plays a crucial role in delivering video across networks. Traditional adaptive bitrate (ABR) algorithms adjust video segment quality based on network conditions and buffer occupancy. However, these algorithms rely on fixed rules, making it challenging to achieve optimal decisions considering the overall context. In this paper, we propose a novel deep-reinforcement-learning-based approach for DASH streaming, with the primary focus of maintaining consistent perceived video quality throughout the streaming session to enhance user experience. Our approach optimizes quality of experience (QoE) by dynamically controlling the quality distance factor between consecutive video segments. We evaluate our approach through a comprehensive simulation model encompassing diverse wireless network environments and various video sequences. We also conduct a comparative analysis with state-of-the-art methods. The experimental results demonstrate signifi...
Making content caching policies 'smart' using the deepcache framework
ACM SIGCOMM Computer Communication Review, 2019
In this paper, we present Deepcache a novel Framework for content caching, which can significantly boost cache performance. Our Framework is based on powerful deep recurrent neural network models. It comprises of two main components: i) Object Characteristics Predictor, which builds upon deep LSTM Encoder-Decoder model to predict the future characteristics of an object (such as object popularity) - to the best of our knowledge, we are the first to propose LSTM Encoder-Decoder model for content caching; ii) a caching policy component, which accounts for predicted information of objects to make smart caching decisions. In our thorough experiments, we show that applying Deepcache Framework to existing cache policies, such as LRU and k-LRU, significantly boosts the number of cache hits.
Deep Learning-Based Content Caching in the Fog Access Points
Electronics
Proactive caching of the most popular contents in the cache memory of fog-access points (F-APs) is regarded as a promising solution for the 5G and beyond cellular communication to address latency-related issues caused by the unprecedented demand of multimedia data traffic. However, it is still challenging to correctly predict the user’s content and store it in the cache memory of the F-APs efficiently as the user preference is dynamic. In this article, to solve this issue to some extent, the deep learning-based content caching (DLCC) method is proposed due to recent advances in deep learning. In DLCC, a 2D CNN-based method is exploited to formulate the caching model. The simulation results in terms of deep learning (DL) accuracy, mean square error (MSE), the cache hit ratio, and the overall system delay is displayed to show that the proposed method outperforms the performance of known DL-based caching strategies, as well as transfer learning-based cooperative caching (LECC) strategy...
journal of network and computer applications, 2021
Edge networking is a complex and dynamic computing paradigm that aims to push cloud resources closer to the end user improving responsiveness and reducing backhaul traffic. User mobility, preferences, and content popularity are the dominant dynamic features of edge networks. Temporal and social features of content, such as the number of views and likes are leveraged to estimate the popularity of content from a global perspective. However, such estimates should not be mapped to an edge network with particular social and geographic characteristics. In next generation edge networks, i.e., 5G and beyond 5G, machine learning techniques can be applied to predict content popularity based on user preferences, cluster users based on similar content interests, and optimize cache placement and replacement strategies provided a set of constraints and predictions about the state of the network. These applications of machine learning can help identify relevant content for an edge network. This article investigates the application of machine learning techniques for in-network caching in edge networks. We survey recent state-of-the-art literature and formulate a comprehensive taxonomy based on (a) machine learning technique (method, objective, and features), (b) caching strategy (policy, location, and replacement), and (c) edge network (type and delivery strategy). A comparative analysis of the state-of-the-art literature is presented with respect to the parameters identified in the taxonomy. Moreover, we debate research challenges and future directions for optimal caching decisions and the application of machine learning in edge networks.
Modified reinforcement learning based- caching system for mobile edge computing
Intelligent Decision Technologies
Caching contents at the edge of mobile networks is an efficient mechanism that can alleviate the backhaul links load and reduce the transmission delay. For this purpose, choosing an adequate caching strategy becomes an important issue. Recently, the tremendous growth of Mobile Edge Computing (MEC) empowers the edge network nodes with more computation capabilities and storage capabilities, allowing the execution of resource-intensive tasks within the mobile network edges such as running artificial intelligence (AI) algorithms. Exploiting users context information intelligently makes it possible to design an intelligent context-aware mobile edge caching. To maximize the caching performance, the suitable methodology is to consider both context awareness and intelligence so that the caching strategy is aware of the environment while caching the appropriate content by making the right decision. Inspired by the success of reinforcement learning (RL) that uses agents to deal with decision ...