A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana (original) (raw)
Abstract
The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-proficient Pseudomonas fluorescens, and eight, including HopQ1-1, showed some capacity to cause cell death in this test. Four gene clusters encoding 13 effectors were deleted from DC3000: cluster II (hopH1, hopC1), IV (hopD1, hopQ1-1, hopR1), IX (hopAA1-2, hopV1, hopAO1, hopG1), and native plasmid pDC3000A (hopAM1-2, hopX1, hopO1-1, hopT1-1). DC3000 mutants deleted for cluster IV or just hopQ1-1 acquired the ability to grow to high levels and produce bacterial speck lesions in N. benthamiana. HopQ1-1 showed other hallmarks of an avirulence determinant in N. benthamiana: expression in the tobacco wildfire pathogen P. syringae pv. tabaci 11528 rendered this strain avirulent in N. benthamiana, and elicitation of the hypersensitive response in N. benthamiana by HopQ1-1 was dependent on SGT1. DC3000 polymutants involving other effector gene clusters in a hopQ1-1-deficient background revealed that clusters II and IX contributed to the severity of lesion symptoms in N. benthamiana, as well as in Arabidopsis and tomato. The results support the hypothesis that the host ranges of P. syringae pathovars are limited by the complex interactions of effector repertoires with plant antieffector surveillance systems, and they demonstrate that N. benthamiana can be a useful model host for DC3000.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (64)
- Abramovitch, R.B., Kim, Y.J., Chen, S., Dickman, M.B. and Martin, G.B. (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22, 60-69.
- Abramovitch, R.B., Anderson, J.C. and Martin, G.B. (2006) Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 7, 601-611.
- Alfano, J.R. and Collmer, A. (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385-414.
- Alfano, J.R., Bauer, D.W., Milos, T.M. and Collmer, A. (1996) Ana- lysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally nonpolar deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol. 19, 715-728.
- Badel, J.L., Charkowski, A.O., Deng, W.-L. and Collmer, A. (2002) A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated else- where in the genome. Mol. Plant-Microbe Interact. 15, 1014-1024.
- Badel, J.L., Nomura, K., Bandyopadhyay, S., Shimizu, R., Collmer, A. and He, S.Y. (2003) Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol. Microbiol. 49, 1239-1251.
- Badel, J.L., Shimizu, R., Oh, H.-S. and Collmer, A. (2006) A Pseu- domonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol. Plant Microbe Interact. 19, 99-111.
- Baulcombe, D.C. (1999) Fast forward genetics based on virus- induced gene silencing. Curr. Opin. Plant Biol. 2, 109-113.
- Buell, C.R., Joardar, V., Lindeberg, M. et al. (2003) The complete sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 100, 10181-10186.
- Castaneda, A., Reddy, J.D., El-Yacoubi, B. and Gabriel, D.W. (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol. Plant Microbe Interact. 18, 1306-1317.
- Chang, J.H., Urbach, J.M., Law, T.F., Arnold, L.W., Hu, A., Gombar, S., Grant, S.R., Ausubel, F.M. and Dangl, J.L. (2005) A high-through- put, near-saturating screen for type III effector genes from Pseu- domonas syringae. Proc. Natl. Acad. Sci. USA, 102, 2549-2554.
- Cohn, J.R. and Martin, G.B. (2005) Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene- dependent cell death in tomato. Plant J. 44, 139-154.
- Cornelis, G.R. (2006) The type III secretion injectisome. Nat. Rev. Microbiol. 4, 811-825.
- Davis, K.R., Schott, E. and Ausubel, F.M. (1991) Virulence of selected phytopathogenic pseudomonads in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 4, 477-488.
- DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K. and He, S.Y. (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. USA, 101, 9927-9932.
- Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q. and Alfano, J.R. (2003) The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants. Mol. Microbiol. 49, 377-387.
- Feil, H., Feil, W.S., Chain, P. et al. (2005) Comparison of the com- plete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 102, 11064-11069.
- Ferreira, A.O., Myers, C.R., Gordon, J.S. et al. (2006) Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis element, and identifies novel co-regulated gene. Mol. Plant Microbe Interact. 19, 1167-1179.
- Gassmann, W. (2005) Natural variation in the Arabidopsis response to the avirulence gene hopPsyA uncouples the hypersensitive response from disease resistance. Mol. Plant Microbe Interact., 18, 1054-1060.
- Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M. and Dangl, J.L. (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60, 425-449.
- Greenberg, J.T. and Vinatzer, B.A. (2003) Identifying type III effec- tors of plant pathogens and analyzing their interaction with plant cells. Curr. Opin. Microbiol. 6, 20-28.
- Hanahan, D. (1985) Techniques for transformation of E. coli. In DNA Cloning: A Practical Approach (Glover, D.M., eds). Oxford, United Kingdom: IRL Press, pp. 109-135.
- Heath, M.C. (2000) Nonhost resistance and nonspecific plant def- enses. Curr. Opin. Plant Biol. 3, 315-319.
- Hirano, S.S. and Upper, C.D. (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae -a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64, 624-653.
- Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J. and Schweizer, H.P. (1998) A broad-host-range Flp-FRT recombina- tion system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudo- monas aeruginosa mutants. Gene, 212, 77-86.
- Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 77, 61-68.
- Huang, H.-C., Schuurink, R., Denny, T.P., Atkinson, M.M., Baker, C.J., Yucel, I., Hutcheson, S.W. and Collmer, A. (1988) Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J. Bacteriol. 170, 4748-4756.
- Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (1990) PCR Protocols. San Diego: Academic Press.
- Jackson, R.W., Athanassopoulos, E., Tsiamis, G., Mansfield, J.W., Sesma, A., Arnold, D.L., Gibbon, M.J., Murillo, J., Taylor, J.D. and Vivian, A. (1999) Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc. Natl. Acad. Sci. USA, 96, 10875-10880.
- Jamir, Y., Guo, M., Oh, H.-S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M.B., Collmer, A. and Alfano, J.R. (2004) Identification of Pseudomonas syringae type III secreted effectors that suppress programmed cell death in plants and yeast. Plant J. 37, 554-565.
- Joardar, V., Lindeberg, M., Jackson, R.W. et al. (2005) Whole gen- ome sequence analysis of Pseudomonas syringae pv. phaseoli- cola 1448A reveals sequence divergence among pathovars in genes involved in virulence and mobile genetic elements. J. Bacteriol. 187, 6488-6498.
- Kamoun, S., Hamada, W. and Huitema, E. (2003) Agrosuppression: a bioassay for the hypersensitive response suited to high- throughput screening. Mol. Plant-Microbe Interact. 16, 7-13.
- Keen, N.T. (1990) Gene-for-gene complementarity in plant-patho- gen interactions. Annu. Rev. Genet. 24, 447-463.
- King, E.O., Ward, M.K. and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44, 301-307.
- Klement, Z., Farkas, G.L. and Lovrekovich, L. (1964) Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology, 54, 474-477.
- Kobayashi, D.Y., Tamaki, S.J. and Keen, N.T. (1989) Cloned aviru- lence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc. Natl. Acad. Sci. USA, 86, 157-161.
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. 2nd. and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying dif- ferent antibiotic-resistance cassettes. Gene, 166, 175-176.
- Leach, J.E., Vera Cruz, C.M., Bai, J. and Leung, H. (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39, 187-224.
- Lin, N.-C. and Martin, G.B. (2007) Pto/Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathovars to infect tomato. Mol. Plant Microbe Interact. (in press).
- Lindeberg, M., Cartinhour, S., Myers, C.R., Schechter, L.M., Schnei- der, D.J. and Collmer, A. (2006) Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol. Plant Microbe Interact. 19, 1151-1158.
- Liu, Y., Schiff, M., Marathe, R. and Dinesh-Kumar, S.P. (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N- mediated resistance to tobacco mosaic virus. Plant J. 30, 415-429.
- Lo ´pez-Solanilla, E., Bronstein, P.A., Schneider, A.R. and Collmer, A. (2004) HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-in- duced necrosis associated with both compatible and incompat- ible plant interactions. Mol. Microbiol. 54, 353-365.
- Lorang, J.M., Shen, H., Kobayashi, D., Cooksey, D. and Keen, N.T. (1994) avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. Plant-Microbe Interact. 7, 508-515.
- McDonald, B.A. and Linde, C. (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phy- topathol. 40, 349-379.
- Mysore, K.S. and Ryu, C.-M. (2004) Nonhost resistance: how much do we know? Trends Plant Sci. 9, 97-104.
- Neyt, C. and Cornelis, G.R. (1999) Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33, 971-981.
- Nomura, K., Melotto, M. and He, S.Y. (2005) Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol. 8, 361-368.
- Oh, H.-S. and Collmer, A. (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vas- cular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J. 44, 348-359.
- Peart, J.R., Lu, R., Sadanandom, A. et al. (2002) Ubiquitin ligase- associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA, 99, 10865-10869.
- Petnicki-Ocwieja, T., Schneider, D.J., Tam, V.C. et al. (2002) Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA, 99, 7652-7657.
- Pitman, A.R., Jackson, R.W., Mansfield, J.W., Kaitell, V., Thwaites, R. and Arnold, D.L. (2005) Exposure to host resistance mecha- nisms drives evolution of bacterial virulence in plants. Curr. Biol. 15, 2230-2235.
- del Pozo, O., Pedley, K.F. and Martin, G.B. (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 23, 3072-3082.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Clo- ning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- Sarkar, S.F. and Guttman, D.S. (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl. Environ. Microbiol. 70, 1999-2012.
- Sarkar, S.F., Gordon, J.S., Martin, G.B. and Guttman, D.S. (2006) Comparative genomics of host-specific virulence in Pseudo- monas syringae. Genetics, 174, 1041-1056.
- Sawada, H., Suzuki, F., Matsuda, I. and Saitou, N. (1999) Phylo- genetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J. Mol. Evol. 49, 627-644.
- Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. (1994) Small mobilizeable multi-purpose cloning vec- tors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebac- terium glutamicum. Gene, 145, 69-73.
- Schechter, L.M., Roberts, K.A., Jamir, Y., Alfano, J.R. and Collmer, A. (2004) Pseudomonas syringae type III secretion system tar- geting signals and novel effectors studied with a Cya transloca- tion reporter. J. Bacteriol. 186, 543-555.
- Schechter, L.M., Vencato, M., Jordan, K.L., Schneider, S.E., Schneider, D.J. and Collmer, A. (2006) Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol. Plant Microbe Interact. 19, 1180-1192.
- Shew, H.D. and Lucas, G.B. (1991) Compendium of Tobacco Dis- eases. St. Paul: APS Press.
- Simon, R., Priefer, U. and Puhler, A. (1983) A broad host range mobilization system of in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology, 1, 784- 791.
- Vencato, M., Tian, T., Alfano, J.R. et al. (2006) Bioinformatics-en- abled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseoli- cola 1448A. Mol. Plant Microbe Interact. 19, 1193-1206.
- Vinatzer, B.A., Teitzel, G.M., Lee, M.W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J.T. (2006) The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol. Microbiol. 62, 26-44.
- Yang, Y., Yuan, Q. and Gabriel, D.W. (1996) Watersoaking func- tion(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol. Plant-Microbe Interact. 9, 105-113.