Uncertainty-aware Clustering for Unsupervised Domain Adaptive Object Re-identification (original) (raw)
Related papers
Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
arXiv (Cornell University), 2023
Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate the Test-Time Adaptation (TTA), a specific case of UDA where a model is adapted to a target domain without access to source data. We propose a novel approach for the TTA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels. The classification loss is reweighted based on the reliability of the pseudo-labels that is measured by estimating their uncertainty. Guided by such reweighting strategy, the pseudolabels are progressively refined by aggregating knowledge from neighbouring samples. Furthermore, a self-supervised contrastive framework is leveraged as a target space regulariser to enhance such knowledge aggregation. A novel negative pairs exclusion strategy is proposed to identify and exclude negative pairs made of samples sharing the same class, even in presence of some noise in the pseudo-labels. Our method outperforms previous methods on three major benchmarks by a large margin. We set the new TTA state-ofthe-art on VisDA-C and DomainNet with a performance gain of +1.8% on both benchmarks and on PACS with +12.3% in the single-source setting and +6.6% in multi-target adaptation. Additional analyses demonstrate that the proposed approach is robust to the noise, which results in significantly more accurate pseudo-labels compared to state-of-the-art approaches.
A Survey of Unsupervised Domain Adaptation for Visual Recognition
ArXiv, 2021
While huge volumes of unlabeled data are generated and made available in many domains, the demand for automated understanding of visual data is higher than ever before. Most existing machine learning models typically rely on massive amounts of labeled training data to achieve high performance. Unfortunately, such a requirement cannot be met in real-world applications. The number of labels is limited and manually annotating data is expensive and time-consuming. It is often necessary to transfer knowledge from an existing labeled domain to a new domain. However, model performance degrades because of the differences between domains (domain shift or dataset bias). To overcome the burden of annotation, Domain Adaptation (DA) aims to mitigate the domain shift problem when transferring knowledge from one domain into another similar but different domain. Unsupervised DA (UDA) deals with a labeled source domain and an unlabeled target domain. The principal objective of UDA is to reduce the d...
Symmetry
Unsupervised domain adaptation (UDA) is a popular approach to reducing distributional discrepancies between labeled source and the unlabeled target domain (TD) in machine learning. However, current UDA approaches often align feature distributions between two domains explicitly without considering the target distribution and intra-domain category information, potentially leading to reduced classifier efficiency when the distribution between training and test sets differs. To address this limitation, we propose a novel approach called Cluster Matching-based Improved Kernel Fisher criterion (CM-IKFC) for object classification in image analysis using machine learning techniques. CM-IKFC generates accurate pseudo-labels for each target sample by considering both domain distributions. Our approach employs K-means clustering to cluster samples in the latent subspace in both domains and then conducts cluster matching in the TD. During the model component training stage, the Improved Kernel ...
Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation
2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021
Recent studies imply that deep neural networks are vulnerable to adversarial examples, i.e., inputs with a slight but intentional perturbation are incorrectly classified by the network. Such vulnerability makes it risky for some security-related applications (e.g., semantic segmentation in autonomous cars) and triggers tremendous concerns on the model reliability. For the first time, we comprehensively evaluate the robustness of existing UDA methods and propose a robust UDA approach. It is rooted in two observations: i) the robustness of UDA methods in semantic segmentation remains unexplored, which poses a security concern in this field; and ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits model robustness in classification and recognition tasks, they fail to provide the critical supervision signals that are essential in semantic segmentation. These observations motivate us to propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space. Extensive empirical studies on commonly used benchmarks demonstrate that ASSUDA is resistant to adversarial attacks.
Contrastive Vicinal Space for Unsupervised Domain Adaptation
Cornell University - arXiv, 2021
Recent unsupervised domain adaptation methods have utilized vicinal space between the source and target domains. However, the equilibrium collapse of labels, a problem where the source labels are dominant over the target labels in the predictions of vicinal instances, has never been addressed. In this paper, we propose an instance-wise minimax strategy that minimizes the entropy of high uncertainty instances in the vicinal space to tackle the stated problem. We divide the vicinal space into two subspaces through the solution of the minimax problem: contrastive space and consensus space. In the contrastive space, inter-domain discrepancy is mitigated by constraining instances to have contrastive views and labels, and the consensus space reduces the confusion between intra-domain categories. The effectiveness of our method is demonstrated on public benchmarks, including Office-31, Office-Home, and VisDA-C, achieving state-of-the-art performances. We further show that our method outperforms the current state-of-the-art methods on PACS, which indicates that our instance-wise approach works well for multi-source domain adaptation as well. Code is available at https: //github.com/NaJaeMin92/CoVi.
Mitigating Uncertainty of Classifier for Unsupervised Domain Adaptation
ArXiv, 2021
Understanding unsupervised domain adaptation has been an important task that has been well explored. However, the wide variety of methods have not analyzed the role of a classifier’s performance in detail. In this paper, we thoroughly examine the role of a classifier in terms of matching source and target distributions. We specifically investigate the classifier ability by matching a) the distribution of features, b) probabilistic uncertainty for samples and c) certainty activation mappings. Our analysis suggests that using these three distributions does result in a consistently improved performance on all the datasets. Our work thus extends present knowledge on the role of the various distributions obtained from the classifier towards solving unsupervised domain adaptation.
Unsupervised and Transfer Learning under Uncertainty-From Object Detections to Scene Categorization
Classifying scenes (e.g. into "street", "home" or "leisure") is an important but complicated task nowadays, because images come with variability, ambiguity, and a wide range of illumination or scale conditions. Standard approaches build an intermediate representation of the global image and learn classifiers on it. Recently, it has been proposed to depict an image as an aggregation of its contained objects:the representation on which classifiers are trained is composed of many heterogeneous feature vectors derived from various object detectors. In this paper, we propose to study different approaches to efficiently combine the data extracted by these detectors. We use the features provided by Object-Bank (Li-Jia Li and Fei-Fei, 2010a) (177 different object detectors producing 252 attributes each), and show on several benchmarks for scene categorization that careful combinations, taking into account the structure of the data, allows to greatly improve over original results (from +5% to +11%) while drastically reducing the dimensionality of the representation by 97% (from 44, 604 to 1, 000).
arXiv (Cornell University), 2024
Standard Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target but usually requires simultaneous access to both source and target data. Moreover, UDA approaches commonly assume that source and target domains share the same labels space. Yet, these two assumptions are hardly satisfied in real-world scenarios. This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting, where both assumptions are dropped. We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes. Starting from an initial clustering-based assignment, our method progressively improves the segregation of target-private samples by refining their pseudo-labels with the guide of an uncertainty-based sample selection module. Additionally, we propose a novel contrastive loss, named NL-InfoNCELoss, that, integrating negative learning into self-supervised contrastive learning, enhances the model robustness to noisy pseudo-labels. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed method over existing approaches, establishing new state-of-the-art performance. Notably, additional analyses show that our method is able to learn the underlying semantics of novel classes, opening the possibility to perform novel class discovery.
Distributionally Robust Learning for Unsupervised Domain Adaptation
ArXiv, 2020
We propose a distributionally robust learning (DRL) method for unsupervised domain adaptation (UDA) that scales to modern computer vision benchmarks. DRL can be naturally formulated as a competitive two-player game between a predictor and an adversary that is allowed to corrupt the labels, subject to certain constraints, and reduces to incorporating a density ratio between the source and target domains (under the standard log loss). This formulation motivates the use of two neural networks that are jointly trained - a discriminative network between the source and target domains for density-ratio estimation, in addition to the standard classification network. The use of a density ratio in DRL prevents the model from being overconfident on target inputs far away from the source domain. Thus, DRL provides conservative confidence estimation in the target domain, even when the target labels are not available. This conservatism motivates the use of DRL in self-training for sample selectio...
Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation
Computer Vision – ECCV 2020, 2020
Unsupervised domain adaptation enables to alleviate the need for pixel-wise annotation in the semantic segmentation. One of the most common strategies is to translate images from the source domain to the target domain and then align their marginal distributions in the feature space using adversarial learning. However, source-to-target translation enlarges the bias in translated images and introduces extra computations, owing to the dominant data size of the source domain. Furthermore, consistency of the joint distribution in source and target domains cannot be guaranteed through global feature alignment. Here, we present an innovative framework, designed to mitigate the image translation bias and align cross-domain features with the same category. This is achieved by 1) performing the target-to-source translation and 2) reconstructing both source and target images from their predicted labels. Extensive experiments on adapting from synthetic to real urban scene understanding demonstrate that our framework competes favorably against existing state-of-the-art methods.