Dynamical mean-field theory for molecular electronics: Electronic structure and transport properties (original) (raw)
We present an approach for calculating the electronic structure and transport properties of nanoscopic conductors that takes into account the dynamical correlations of strongly interacting d-or f-electrons by combining density functional theory calculations with the dynamical mean-field theory. While the density functional calculation yields a static mean-field description of the weakly interacting electrons, the dynamical mean-field theory explicitly takes into account the dynamical correlations of the strongly interacting d-or f-electrons of transition metal atoms. As an example we calculate the electronic structure and conductance of Ni nanocontacts between Cu electrodes. We find that the dynamical correlations of the Ni 3d-electrons give rise to quasi-particle resonances at the Fermi-level in the spectral density. The quasi-particle resonances in turn lead to Fano lineshapes in the conductance characteristics of the nanocontacts similar to those measured in recent experiments of magnetic nanocontacts.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.