Glutamatergic Transmission: A Matter of Three (original) (raw)

Glial glutamate transporters: New actors in brain signaling

IUBMB Life, 2011

Glutamate, the main excitatory amino acid in the vertebrate brain, is critically involved in most of the physiological functions of the central nervous system. It has traditionally been assumed that glutamate triggers a wide array of signaling cascades through the activation of specific membrane receptors. The extracellular levels are tightly regulated to prevent neurotoxic insults. Electrogenic Na 1 -dependent glial glutamate transporters remove the bulk of the neurotransmitter from the synaptic cleft. An exquisitely ordered coupling between glutamatergic neurons and surrounding glia cells is fundamental for excitatory transmission. The glutamate/glutamine and astrocyte/ neuron lactate shuttles provide the biochemical framework of this compulsory association. In this context, recent advances show that glial glutamate transporters act as signal transducers that regulate the expression of proteins involved in their compartmentalization with neurons in the so-called tripartite synapse.

The Glia Connection of the Glutamate/Glutamine Shuttle

Problem statement: Glia cells outnumber neurons but their role in synaptic transmission is still matter of debate. The recycling of Glutamate, the main excitatory neurotransmitter, carried out by the glutamate/glutamine shuttle, requires the involvement of glia, suggesting their involvement in neurotransmission. Approach: This review focuses on novel functions of glia proteins involved in this cycle. Results: An activity-dependent interaction of glial glutamate transporters, the Na +/K+ ATPase, the glutamine and glucose transporters might support glutamatergic neurotransmission. Conclusion: Glia cells that surround glutamatergic contacts, respond to synaptic activity and modify accordingly, the amount and function of the proteins involved in their interaction with neurons thus assuring a synaptic transmission.

Glutamate-mediated neuronal?glial transmission

Journal of Anatomy, 2007

The brain is the most complex organ of the human body. It is composed of several highly specialized and heterogeneous populations of cells, represented by neurones (e.g. motoneurons, projection neurons or interneurons), and glia represented by astrocytes, oligodendrocytes and microglia. In recent years there have been numerous studies demonstrating close bidirectional communication of neurons and glia at structural and functional levels.

Glutamate transporters: Gene expression regulation and signaling properties

Neuropharmacology, 2019

Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults.

Glutamate transporters bring competition to the synapse

Current Opinion in Neurobiology, 2004

Glutamate transporters (GluTs) prevent the accumulation of glutamate and influence the occupancy of receptors at synapses. The ability of extrasynaptic NMDA receptors and metabotropic glutamate receptors to participate in signaling is tightly regulated by GluT activity. Astrocytes express the highest density of GluTs and dominate clearance away from these receptors; synapses that are not associated with astrocyte processes experience greater mGluR activation and can be exposed to glutamate released at adjacent synapses. Although less abundant, neuronal transporters residing in the postsynaptic membrane can also shield receptors from the glutamate that is released. The diversity in synaptic morphology suggests a correspondingly rich diversity of GluT function in excitatory transmission.

The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse

Journal of Neurochemistry, 2014

Glutamate is the major excitatory neurotransmitter, and is inactivated by cellular uptake catalyzed mostly by the glutamate transporter subtypes GLT-1 (EAAT2) and GLAST (EAAT1). Astrocytes express both GLT-1 and GLAST, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we injected GLT-1 knockout (KO) mice and wild-type littermates with [1-13 C] glucose and [1,2-13 C]acetate 15 min before euthanization. Metabolite levels were analyzed in extracts from neocortex and cerebellum and 13 C labeling in neocortex. Whereas the cerebellum in GLT-1-deficient mice had normal levels of glutamate, glutamine, and 13 C labeling of metabolites, glutamate level was decreased but labeling from [1-13 C] glucose was unchanged in the neocortex. The contribution from pyruvate carboxylation toward labeling of these metabolites was unchanged. Labeling from [1,2-13 C] acetate, originating in astrocytes, was decreased in glutamate and glutamine in the neocortex indicating reduced mitochondrial metabolism in astrocytes. The decreased amount of glutamate in the cortex indicates that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the cortex.

Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells

Neurochemical Research, 2016

Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na ?-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [ 3 H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dosedependent increase in the transporter activity was detected. This effect was dependent on the activation of the Nmethyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function.

GLAST/EAAT1-induced Glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling

Journal of Neurochemistry, 2013

Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodiumdependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium-dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so-called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time-dependent Na +-dependent glutamate/aspartate transporter/EAAT1-induced System N-mediated glutamine release could be demonstrated. Furthermore, D-aspartate, a specific glutamate transporter ligand, was capable of enhancing the co-immunoprecipitation of Na +dependent glutamate/aspartate transporter and Na +-dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron-derived glutamate through their contribution to the neurotransmitter turnover.