Calibration Improves Bayesian Optimization (original) (raw)
Related papers
Automatic tuning of hyperparameters using Bayesian optimization
Evolving Systems, 2020
Deep learning is a field in artificial intelligence that works well in computer vision, natural language processing and audio recognition. Deep neural network architectures has number of layers to conceive the features well, by itself. The hyperparameter tuning plays a major role in every dataset which has major effect in the performance of the training model. Due to the large dimensionality of data it is impossible to tune the parameters by human expertise. In this paper, we have used the CIFAR-10 Dataset and applied the Bayesian hyperparameter optimization algorithm to enhance the performance of the model. Bayesian optimization can be used for any noisy black box function for hyperparameter tuning. In this work Bayesian optimization clearly obtains optimized values for all hyperparameters which saves time and improves performance. The results also show that the error has been reduced in graphical processing unit than in CPU by 6.2% in the validation. Achieving global optimization in the trained model helps transfer learning across domains as well.
HEBO: An Empirical Study of Assumptions in Bayesian Optimisation
Journal of Artificial Intelligence Research
In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO’s empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multiobjective acquisition ensembles with Pareto ...
An Empirical Study of Assumptions in Bayesian Optimisation
2020
In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO’s empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multi-objective acquisition ensembles with Pareto...
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization
ArXiv, 2020
Bayesian optimization (BO) is a popular method to optimize expensive black-box functions. It efficiently tunes machine learning algorithms under the implicit assumption that hyperparameter evaluations cost approximately the same. In reality, the cost of evaluating different hyperparameters, be it in terms of time, dollars or energy, can span several orders of magnitude of difference. While a number of heuristics have been proposed to make BO cost-aware, none of these have been proven to work robustly. In this work, we reformulate cost-aware BO in terms of Pareto efficiency and introduce the cost Pareto Front, a mathematical object allowing us to highlight the shortcomings of commonly used acquisition functions. Based on this, we propose a novel Pareto-efficient adaptation of the expected improvement. On 144 real-world black-box function optimization problems we show that our Pareto-efficient acquisition functions significantly outperform previous solutions, bringing up to 50% speed-...
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
arXiv (Cornell University), 2020
In this work we rigorously analyse assumptions inherent to black-box optimisation hyper-parameter tuning tasks. Our results on the Bayesmark benchmark indicate that heteroscedasticity and non-stationarity pose significant challenges for black-box optimisers. Based on these findings, we propose a Heteroscedastic and Evolutionary Bayesian Optimisation solver (HEBO). HEBO performs non-linear input and output warping, admits exact marginal log-likelihood optimisation and is robust to the values of learned parameters. We demonstrate HEBO's empirical efficacy on the NeurIPS 2020 Black-Box Optimisation challenge, where HEBO placed first. Upon further analysis, we observe that HEBO significantly outperforms existing black-box optimisers on 108 machine learning hyperparameter tuning tasks comprising the Bayesmark benchmark. Our findings indicate that the majority of hyper-parameter tuning tasks exhibit heteroscedasticity and non-stationarity, multi-objective acquisition ensembles with Pareto front solutions improve queried configurations, and robust acquisition maximisers afford empirical advantages relative to their non-robust counterparts. We hope these findings may serve as guiding principles for practitioners of Bayesian optimisation. All code is made available at https://github.com/huawei-noah/HEBO.
Recent Advances in Bayesian Optimization
arXiv (Cornell University), 2022
Bayesian optimization has emerged at the forefront of expensive black-box optimization due to its data efficiency. Recent years have witnessed a proliferation of studies on the development of new Bayesian optimization algorithms and their applications. Hence, this paper attempts to provide a comprehensive and updated survey of recent advances in Bayesian optimization and identify interesting open problems. We categorize the existing work on Bayesian optimization into nine main groups according to the motivations and focus of the proposed algorithms. For each category, we present the main advances with respect to the construction of surrogate models and adaptation of the acquisition functions. Finally, we discuss the open questions and suggest promising future research directions, in particular with regard to heterogeneity, privacy preservation, and fairness in distributed and federated optimization systems. CCS CONCEPTS • General and reference → Surveys and overviews; • Theory of computation → Bayesian analysis; • Mathematics of computing → Nonparametric statistics.
Practical Bayesian Optimization of Machine Learning Algorithms
The use of machine learning algorithms frequently involves careful tuning of learning parameters and model hyperparameters. Unfortunately, this tuning is often a " black art " requiring expert experience, rules of thumb, or sometimes brute-force search. There is therefore great appeal for automatic approaches that can optimize the performance of any given learning algorithm to the problem at hand. In this work, we consider this problem through the framework of Bayesian optimization , in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). We show that certain choices for the nature of the GP, such as the type of kernel and the treatment of its hyperparame-ters, can play a crucial role in obtaining a good optimizer that can achieve expert-level performance. We describe new algorithms that take into account the variable cost (duration) of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.
Bayesian optimization with informative parametric models via sequential Monte Carlo
Data-Centric Engineering, 2022
Bayesian optimization (BO) has been a successful approach to optimize expensive functions whose prior knowledge can be specified by means of a probabilistic model. Due to their expressiveness and tractable closed-form predictive distributions, Gaussian process (GP) surrogate models have been the default go-to choice when deriving BO frameworks. However, as nonparametric models, GPs offer very little in terms of interpretability and informative power when applied to model complex physical phenomena in scientific applications. In addition, the Gaussian assumption also limits the applicability of GPs to problems where the variables of interest may highly deviate from Gaussianity. In this article, we investigate an alternative modeling framework for BO which makes use of sequential Monte Carlo (SMC) to perform Bayesian inference with parametric models. We propose a BO algorithm to take advantage of SMC’s flexible posterior representations and provide methods to compensate for bias in th...
Multi-Task Gaussian Process Upper Confidence Bound for Hyperparameter Tuning
In many scientific and engineering applications, Bayesian optimization (BO) is a powerful tool for hyperparameter tuning of a machine learning model, materials design and discovery, etc. BO guides the choice of experiments in a sequential way to find a good combination of design points in as few experiments as possible. It can be formulated as a problem of optimizing a “black-box” function. Different from single-task Bayesian optimization, Multi-task Bayesian optimization is a general method to efficiently optimize multiple different but correlated “black-box” functions. The previous works in Multi-task Bayesian optimization algorithm queries a point to be evaluated for all tasks in each round of search, which is not efficient. For the case where different tasks are correlated, it is not necessary to evaluate all tasks for a given query point. Therefore, the objective of this work is to develop an algorithm for multi-task Bayesian optimization with automatic task selection so that o...
Bayesian Optimization for Parameter Identification on a Small Simulation Budget
15th IFAC Symposium on System Identification, 2009, 2009
Bayesian optimization uses a probabilistic model of the objective function to guide the search for the optimum. It is particularly interesting for the optimization of expensive-to-evaluate functions. For the last decade, it has been increasingly used for industrial optimization problems and especially for numerical design involving complex computer simulations. We feel that Bayesian optimization should be considered with attention by anyone who has to identify the parameters of a model based on a very limited number of model simulations because of model complexity. In this paper, we wish to describe, as simply as possible, how Bayesian optimization can be used in parameter identification and to present a new application. We concentrate on two algorithms, namely EGO (for Efficient Global Optimization) and IAGO (for Informational Approach to Global Optimization), and describe how they can be used for parameter identification when the budget for evaluating the cost function is severely limited. Some open questions that must be addressed for theoretical and practical reasons are indicated.