Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea (original) (raw)

Isolation, culture, characterization and optimization of human corneal stem cells

Biocell : official journal of the Sociedades Latinoamericanas de Microscopía Electronica ... et. al, 2010

The effects of human versus mouse EGF on cell growth and culture duration were studied to optimize a human limbal stem cells culture method for therapeutical autologous transplantation. Limbal cells were obtained by trypsin digestion and transferred to a culture medium. The time needed to reach full confluence in culture was determined. Specific antibodies to corneal stem cell marker (P63) versus corneal epithelial differentiation marker (K3) were used for histochemical determinations. A high proportion of P63 positive cells (85 +/- 4.6%), and a correspondingly low proportion K3 positive cells (15 +/- 3.8%) indicated that most cultured cells remained undifferentiated and were considered as stem cells (mean +/- SE, n=10). Cultures reached full confluency after 17.3 +/- 1.2 days when the medium was supplemented with human EGF, while 21.7 +/- 1.5 days were needed when the medium was supplemented with mouse EGF. The results showed that limbal stem cells proliferate more easily and reach...

Brief Note: Isolation, culture, characterization and optimization of human corneal stem cells

BIOCELL, 2010

The effects of human versus mouse EGF on cell growth and culture duration were studied to optimize a human limbal stem cells culture method for therapeutical autologous transplantation. Limbal cells were obtained by trypsin digestion and transferred to a culture medium. The time needed to reach full confluence in culture was determined. Specific antibodies to corneal stem cell marker (P63) versus corneal epithelial differentiation marker (K3) were used for histochemical determinations. A high proportion of P63 positive cells (85± 4.6%), and a correspondingly low proportion K3 positive cells (15 ± 3.8%) indicated that most cultured cells remained undifferentiated and were considered as stem cells (mean ± SE, n=10). Cultures reached full confluency after 17.3 ± 1.2 days when the medium was supplemented with human EGF, while 21.7 ± 1.5 days were needed when the medium was supplemented with mouse EGF. The results showed that limbal stem cells proliferate more easily and reach to full confluency in a shorter time if the medium is supplemented with hEGF rather than with mEGF.

The Culture of Limbal Stromal Cells and Corneal Endothelial Cells

Methods in Molecular Biology, 2013

The cornea is the transparent front part of the eye and comprises three distinct cell layers. One of these cell layers is a self-renewing epithelium long believed to harbor a resident stem cell population. The location and characteristics of corneal epithelial stem cells have now been con fi rmed by several research groups, and these cells are currently applied therapeutically. The corneal stroma and endothelium are largely quiescent after infancy, and until recently they were not considered to undergo self-renewal or to maintain stem cells. This view was overturned during the last two decades. At present, cell populations with characteristics of adult stem cells are routinely isolated and characterized from the limbal stroma and the corneal endothelium. This chapter describes methods for isolation and culture of limbal stromal cells and corneal endothelial cells.

Cultivation and Characterization of Cornea Limbal Epithelial Stem Cells on Lens Capsule in Animal Material-Free Medium

PLoS ONE, 2012

A simple, reproducible, animal-material free method for cultivating and characterizing cornea limbal epithelial stem cells (LESCs) on human lens capsule (LC) was developed for future clinical transplantation. The limbal tissue explants (26260.25 mm) were harvested from 77 cadavers and expanded ex vivo on either cell culture plates or LC in medium containing human serum as the only growth supplement. Cell outgrowth at the edge of the explants was observed within 24 hours of cultivation and achieved viable outgrowth (.97% viability as measured by MTT assay and flow cytometry) within two weeks. The outgrowing cells were examined by genome-wide microarray including markers of stemness (p63a, ABCG2, CK19, Vimentin and Integrin a9), proliferation (Ki-67), limbal epithelial cells (CK 8/18 and 14) and differentiated cornea epithelial cells (CK 3 and 12). Immunostaining revealed the non-hematopoietic, -endothelial and -mesenchymal stem cell phenotype of the LESCs and the localization of specific markers in situ. Cell adhesion molecules, integrins and lectinbased surface carbohydrate profiling showed a specific pattern on these cells, while colony-formation assay confirmed their clonal potency. The LESCs expressed a specific surface marker fingerprint (CD117/c-kit, CXCR4, CD144/VE-Cadherin, CD146/ MCAM, CD166/ALCAM, and surface carbohydrates: WGA, ConA, RCA, PNA and AIL) which can be used for better localization of the limbal stem cell niche. In summary, we report a novel method combining the use of a medium with human serum as the only growth supplement with LC for cultivating, characterizing and expanding cornea LESCs from cadavers or alternatively from autologous donors for possible treatment of LESC deficiency.

Secretion and Organization of a Cornea-like Tissue In Vitro by Stem Cells from Human Corneal Stroma

Investigative Ophthalmology & Visual Science, 2007

PURPOSE. To investigate the potential of human corneal stromal stem cells to assume a keratocyte phenotype and to organize extracellular matrix (ECM) in vitro similar to corneal stromal tissue. METHODS. Human corneal stromal stem cells (hCSSC) were isolated as side population cells by flow cytometry. Cloned hCSSC were cultured as free-floating pellets in serum-free media for 3 weeks. Gene expression was examined using gene array, quantitative RT-PCR, immunostaining, and immunoblotting. Transmission electron microscopy showed collagen fibril size and alignment. RESULTS. Pellet cultures of hCSSC in serum-free media upregulated the expression of keratocyte-specific genes and secreted substantial ECM containing characteristic stromal components: keratocan, keratan sulfate, collagen I, collagen V, and collagen VI. Abundant connexin 43 and cadherin 11 in pellets demonstrated cell-cell junctions typical of keratocytes in vivo. Electron microscopy of the pellet cultures revealed abundant fibrillar collagen, some of which was aligned in parallel arrays similar to those of stromal lamellae. Gene array identified expression in pellets of several genes highly expressed by keratocytes. Transcripts for these keratocyte genes-FLJ30046, KERA, ALDH3A1, CXADR, PTGDS, PDK4, MTAC2D1, F13A1-were increased by as much as 100-fold in pellets compared with hCSSC. Simultaneously, expression of stem cell genes BMI1, KIT, NOTCH1, SIX2, PAX6, ABCG2, SPAG10, and OSIL was reduced by a similar factor in pellets compared with hCSSC. CONCLUSIONS. Scaffolding-free pellet culture of hCSSC induces keratocyte gene expression patterns in these cells and secretion of an organized stroma-like ECM. These cells offer a novel potential for corneal bioengineering.

Limbal Epithelial Stem Cells in Corneal Regeneration

Delhi Journal of Ophthalmology, 2013

The cornea is the transparent and outer most part of the eye, which is responsible for clear vision. The homeostasis of corneal epithelium is maintained by stem cells (SCs) located at the limbus, which is a transitional zone between cornea and conjunctiva. Due to some conditions limbal stem cells (LSCs) can be destroyed or lost and this can cause limbal stem cell deficiency (LSCD). Conventional non-surgical management and corneal transplants are not enough to treat LSCD. Recent advances in tissue engineering have made possible to rejuvenate the LSC deficit ocular surface with ex-vivo cultivated limbal epithelium and this is possible to achieve from a significantly small limbal biopsy. In spite of all progress made in this field, it is still questionable to identify LSCs based on the biomarkers. This review article will focus on the biology of LSCs and their emerging trend in the field of regenerative medicine. Apart from that this article will also highlight different culture techniques to cultivate LSCs and novel biofunctional scaffolds.

Culture of Corneal Limbal Epithelial Stem Cells: Experience From Benchtop to Bedside in a Tertiary Care Hospital in India

Cornea, 2011

Purpose: To standardize the technique of ex vivo culture of limbal epithelial stem cells (LESCs) using locally available adapted methods and evaluate the outcome of transplantation in patients with limbal stem cell deficiency. Methods: Limbal tissue specimens were isolated from cadaveric corneoscleral rims, living related donors, or contralateral eye of the patients. Harvested tissue was cultured on denuded human amniotic membrane (dHAM) using various techniques to stabilize dHAM. The optimization of in vitro culture conditions was achieved by modifications in culture media (culture media 1 and 2). The LESCs were cultured in both types of media for 2 weeks, and growth patterns were observed. Expanded cells were further characterized by immunocytochemistry (K3/12, K19, and ABCG2) and reverse transcriptase polymerase chain reaction (K12, Cx43, Pax6, ABCG2, p63, and K19). The cultivated epithelium was transplanted in 50 patients with total and partial limbal stem cell deficiencies. Results: Stabilization of dHAM was successfully achieved using coverslips. The outgrowth was observed within 1-3 days of culture using both types of culture media (P = 0.20), but cultures in culture medium 1 reached confluency faster than cultures in culture medium 2 (P = 0.0004). Histopathological analysis showed multilayer formation and immunostaining, and reverse transcriptase polymerase chain reaction data confirmed the expression of both stem cell markers (K19, p63, and ABCG2) and differentiation markers (K3, K12, and Cx43). Patients who had undergone limbal stem cell transplantation showed a stable ocular surface with improved visual acuity over a long-term follow-up period. Conclusions: LESCs were successfully cultured using locally available adapted methods, and their clinical benefits verified by transplantation.

Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures

Experimental Eye Research, 2004

Cultivated human corneal epithelial cells have been successfully used for corneal reconstruction. Explant and single cell systems are currently used for human corneal epithelial cultivation. This study was conducted to characterize the phenotypes of human corneal epithelial cells expanded ex vivo by these two culture systems with regard to their growth potential, morphology and antigen expression patterns. Human corneal epithelial cells were expanded by limbal explant culture or limbal single cell suspension culture on a mitomycin C treated 3T3 fibroblast feeder layer. The phenotypes of primary cultured cells were evaluated by morphology and immunohistochemical staining with antibodies for proposed keratinocyte stem cell markers (p63, EGFR, K19 and integrin β1) and differentiation markers (K3, involucrin and gap junction protein connexin 43). BrdU labeling was performed to identify the label-retaining cells. Human corneal epithelial cells were grown from limbal tissues preserved as long as 16 days by both culture systems. The growth rate depended on the tissue freshness, the time from death to preservation and the time from death to culture, but not on the donor age. Cell growth was observed in 96.2% (n = 43) of single cell suspension cultures and in 90.8% (n = 213) of explant cultures. The cell expansion was confluent in 10-14 days in single cell suspension cultures and 14-21 days in explant cultures. The cell morphology in single cell suspension culture was smaller, more compact and uniform than that in explant culture. Immunostaining showed a greater number of the small cells expressing p63, EGFR, K19 and integrin β1, while more larger cells stained positively for K3, involucrin and connexin 43 in both culture systems. BrdU-label retaining cells were identified in 2.3 ± 0.7% of explant cultures and 3.73 ± 1.5% of single cell cultures chased for 21 days. In conclusion, the limbal rims are a great treasure for ex vivo expansion of human corneal epithelial cells. The phenotypes of corneal epithelial cells, ranging from basal cells to superficial differentiated cells, are well maintained in both culture systems. Slow-cycling BrdU-label retaining cells, that are characteristic of stem cells, were identified in the cultures.

Human limbal biopsy-derived stromal stem cells prevent corneal scarring

Science translational medicine, 2014

Conventional allograft therapy for corneal scarring is widespread and successful, but donor tissue is not universally available, and some grafts fail owing to rejection and complications such as endothelial failure. We investigated direct treatment of corneal scarring using autologous stem cells, a therapy that, if successful, could reduce the need for corneal grafts. Mesenchymal cells were expanded from small superficial, clinically replicable limbal biopsies of human cadaveric corneo-scleral rims. Limbal biopsy-derived stromal cells (LBSCs) expanded rapidly in media containing human serum, were highly clonogenic, and could generate spheres expressing stem cell genes (ABCG2, Nestin, NGFR, Oct4, PAX6, and Sox2). Human LBSCs differentiated into keratocytes expressing characteristic marker genes (ALDH3A1, AQP1, KERA, and PTGDS) and organized a thick lamellar stroma-like tissue containing aligned collagen and keratan sulfate proteoglycans when cultured on aligned nanofiber substrata. W...