Sodium phosphate enhances plasmid DNA expression in vivo (original) (raw)
Related papers
Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection
Gene, 2001
Using¯ow cytometry, single cell sorting, confocal microscopy and¯uorescent plasmids, a thorough study of DNA uptake, DNA fate and DNA expression in mammalian cells transfected with the widely used calcium-phosphate precipitation method was executed. We show for the ®rst time that up to 100,000 plasmid molecules can be delivered into individual cells, but also that DNA transfer into cells is a dynamic process that follows a de®ned kinetics of uptake and intracellular processing. Analyses by¯ow cytometry and confocal microscopy have also supported results suggesting endocytosis during Ca-Pi transfection. We also demonstrate that expression-enhancing treatment with glycerol during transfection did not result in increased DNA uptake. While cells with maximal DNA load appear to express the highest level of the transgene, these cells are negatively impacted in terms of growth and survival.
Journal of Pharmacological Sciences, 2005
In vivo gene transfer with plasmid vector has been applied experimentally and clinically; however, the low level of gene transfer efficiency with plasmid vector is a problem. We speculated that the combination of calcium phosphate precipitate (CaP) and plasmid vector could solve this problem because CaP stabilizes plasmid DNA. In the present study, we used a plasmid exression vector encoding enhanced green fluorescent protein and combined the vector with CaP. Then, this combination was mixed with bovine type I atelocollagen. After incubating this mixture in phosphate-buffered saline, the amount of the plasmid DNA in the supernatant was low when the plasmid DNA was combined with CaP. Furthermore, the plasmid DNA, which was combined with CaP, was stable in DNase digestion in vitro. The plasmid vector with or without CaP, together with the atelocollagen, was transplanted subcutaneously or injected in the bone marrow of the femurs of rats. Then, the fluorescence was observed under a confocal laser scanning microscope and the fluorescence intensity in the tissue homogenates was measured. In these animal experiments, the fluorescence was extensive when the plasmid DNA was combined with CaP. These results indicate that our formula, collagen / CaP/ DNA, appeared efficient for in vivo gene transfer.
Human Gene Therapy, 1993
Direct injection of nonviral, covalently closed circular plasmid DNA into muscle results in expression of the DNA in myofiber cells. We have examined the expression of firefly luciferase DNA constructs injected into adult murine skeletal muscle. Considerable variation in luciferase enzyme expression was noted among constructs with different regulatory elements, among different batches ofthe same DNA construct, and among similar transfection experiments performed at different times. This variation was minimized by using single batches of plasmid DNA and by performing comparable sets of experiments concurrently. A quantitative experimental protocol was defined for comparing various aspects of the transfection process. We report that a luciferase construct containing the human cytomegalovirus immediate-early gene promoter plus intron A (a construct termed "p-CMVint-lux") showed the highest expression among several constructs tested. Doseresponse and time course analyses of p-CMVint-lux DNA injections showed that maximal luciferase expression was achieved with 25 ixg of DNA at 7-14 days post-injection. Selected manipulations ofthe transfection process were examined for their influence on luciferase expression. Variations in the rate of DNA injection, needle size, injection volume, and vehicle temperature had no signiflcant effect on luciferase expression. The presence of endotoxin, cationic peptide, muscle stimulants or relaxants, vasoconstrictors, metal chelators, or lysosomal lytic reagents had no signiflcant effect on expression. However, linearization ofthe DNA, injection ofthe DNA in water rather than saline, or inclusion of a DNA intercalating agent nearly abolished luciferase expression. And flnally, increasing the injection dose by giving multiple injections over a lO-day period increased expression proportionally to the number of injections.
Journal of cell science, 1992
Plasmid DNA or artificial mRNA injected intramuscularly into skeletal muscle via a 27 g needle expressed transgenes at relatively efficient levels in skeletal myofibers and cardiac cells. In the present study, several approaches were used to determine the mechanism of cellular uptake. After exposure of naked plasmid DNA, primary rat muscle cells in vitro expressed transgenes to a much greater extent than other types of immortalized or primary cells. In vivo light microscope studies showed that intramuscularly injected plasmid DNA was distributed throughout the muscle and was able to diffuse through the extracellular matrix, cross the external lamina, and enter myofibers. Electron microscope studies showed that colloidal gold conjugated to plasmid DNA traversed the external lamina and entered T tubules and caveolae, while gold complexed with polylysine, polyethylene glycol or polyglutamate primarily remained outside of the myofibers. The results indicate that it is highly unlikely th...
Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1998
Cationic lipid-mediated gene transfer has been shown to be a competent albeit inefficient mechanism of promoting cellular gene transfer. One way to improve the efficacy of cationic lipid-mediated transgene expression is to optimize conditions for complex formation between the lipids and nucleic acids. In this report we describe the beneficial effects of Ž Ž . w Ž .
Molecular Therapy, 2001
Electroporation has been reported to facilitate naked DNA gene transfer in skeletal muscle, but has also been implicated in the pathogenesis of electrical injuries. To assess the effects of electroporation on gene transfer, mouse quadriceps muscles were injected with the luciferase reporter plasmid VR1255 and electroporated with caliper electrodes. Intramuscular luciferase expression was increased 10-to 70-fold by electroporation, depending on the DNA dose and injection volume used. In the absence of plasmid DNA injection, electroporation of quadriceps muscles resulted in rapid elevations in serum creatine phosphokinase activity, but did not elicit visible muscle damage. However, in muscles injected with plasmid DNA and electroporated, visible lesions consistently developed in the areas proximal to electrode placement when field strengths optimal for gene transfer (300 volts/cm) were applied. The development of muscle lesions was independent of plasmid transgene expression and required the presence of plasmid in the muscle during electroporation. Co-injection of poloxamer 188 (pluronic F68) with VR1255 substantially reduced elevations in serum creatine phosphokinase activity following electroporation, but did not inhibit the development of muscle lesions. In non-electroporated muscles, co-injection of poloxamer 188 increased luciferase expression threefold. Poloxamer 188 may thus constitute a useful excipient for intramuscular delivery of naked DNA.
Calcium phosphate-mediated gene delivery using simulated body fluid (SBF)
International Journal of …, 2012
The present study aimed at developing a new approach in gene delivery of calcium phosphate nanoparticles through simulated body fluid (CaP-SBF). The physicochemical and biological characteristics of the CaP-SBF nanoparticles were compared with those made in pure water (CaP-water) via a similar procedure. The CaP-SBF and CaP-water solutions were then adjusted to two different pH values of 7.4 and 8.0, mixed with plasmid DNA (pDNA), and added in varying amounts to human embryonic kidney (HEK 293T) cells. The transfection efficiency and cell viability were studied in vitro by reporter gene (luciferase and Enhanced Green Fluorescent Protein) expression and the resazurin reduction assay, respectively, 24 and 48 h after the incubation with the nanoparticles. Our results indicated considerably high in vitro transfection efficiency for CaP-SBF/DNA complexes at physiological pH (7.4) with high amounts of CaP. Additionally, the SBF solution exhibited the ability to reduce the rapid growth of CaP particles over time, leading to higher transfection efficiency of CaP-SBF/DNA complexes than those made in water (CaP-water/DNA).