Directed Evolution and Structural Analysis of NADPH-Dependent Acetoacetyl Coenzyme A (Acetoacetyl-CoA) Reductase from Ralstonia eutropha Reveals Two Mutations Responsible for Enhanced Kinetics (original) (raw)

Mechanistic Studies on Class I Polyhydroxybutyrate (PHB) Synthase from Ralstonia eutropha: Class I and III Synthases Share a Similar Catalytic Mechanism

The Class I and III polyhydroxybutyrate (PHB) synthases from Ralstonia eutropha and Chromatium Vinosum, respectively, catalyze the polymerization of-hydroxybutyryl-coenzyme A (HBCoA) to generate PHB. These synthases have different molecular weights, subunit composition, and kinetic properties. Recent studies with the C. Vinosum synthase suggested that it is structurally homologous to bacterial lipases and allowed identification of active site residues important for catalysis [Jia, Y., Kappock, T. J., Frick, T., Sinskey, A. J., and Stubbe, J. (2000) Biochemistry 39, 3927-3936]. Sequence alignments between the Class I and III synthases revealed similar residues in the R. eutropha synthase. Site-directed mutants of these residues were prepared and examined using HBCoA and a terminally saturated trimer of HBCoA (sT-CoA) as probes. These studies reveal that the R. eutropha synthase possesses an essential catalytic dyad (C319-H508) in which the C319 is involved in covalent catalysis. A conserved Asp, D480, was shown not to be required for acylation of C319 by sT-CoA and is proposed to function as a general base catalyst to activate the hydroxyl of HBCoA for ester formation. Studies of the [ 3 H]sT-CoA with wild-type and mutant synthases reveal that 0.5 equiv of radiolabel is covalently bound per monomer of synthase, suggesting that a dimeric form of the enzyme is involved in elongation. These studies, in conjunction with search algorithms for secondary structure, suggest that the Class I and III synthases are mechanistically similar and structurally homologous, despite their physical and kinetic differences.

Multiple β-Ketothiolases Mediate Poly(β-Hydroxyalkanoate) Copolymer Synthesis in Ralstonia eutropha

Journal of Bacteriology, 1998

Polyhydroxyalkanoates (PHAs) are a class of carbon and energy storage polymers produced by numerous bacteria in response to environmental limitation. The type of polymer produced depends on the carbon sources available, the flexibility of the organism's intermediary metabolism, and the substrate specificity of the PHA biosynthetic enzymes. Ralstonia eutropha produces both the homopolymer poly-␤-hydroxybutyrate (PHB) and, when provided with the appropriate substrate, the copolymer poly(␤-hydroxybutyrate-co-␤-hydroxyvalerate) (PHBV). A required step in production of the hydroxyvalerate moiety of PHBV is the condensation of acetyl coenzyme A (acetyl-CoA) and propionyl-CoA to form ␤-ketovaleryl-CoA. This activity has generally been attributed to the ␤-ketothiolase encoded by R. eutropha phbA. However, we have determined that PhbA does not significantly contribute to catalyzing this condensation reaction. Here we report the cloning and genetic analysis of bktB, which encodes a ␤-ketothiolase from R. eutropha that is capable of forming ␤-ketovaleryl-CoA. Genetic analyses determined that BktB is the primary condensation enzyme leading to production of ␤-hydroxyvalerate derived from propionyl-CoA. We also report an additional ␤-ketothiolase, designated BktC, that probably serves as a secondary route toward ␤-hydroxyvalerate production.

Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model

Biochimica Et Biophysica Acta-protein Structure and Molecular Enzymology - BBA-PROTEIN STRUCT MOL ENZYM, 2002

A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281–D290, A372–C382, E578–A589 and V585–A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaCPa) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaCRe) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaCPa-1-265-PhaCRe-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.

Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

Applied microbiology and biotechnology, 2015

2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by L-valine (IC50=1.2 mM), L-is...

Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha : formation of novel copolyesters in recombinant Escherichia coli

FEMS Microbiology Letters, 2000

In order to investigate the in vivo substrate specificity of the type I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha, we functionally expressed the PHA synthase gene in various Escherichia coli mutants affected in fatty acid L-oxidation and the wild-type. The PHA synthase gene was expressed either solely (pBHR70) or in addition to the R. eutropha genes encoding L-ketothiolase and acetoacetylcoenzyme A (CoA) reductase comprising the entire PHB operon (pBHR68) as well as in combination with the phaC1 gene (pBHR77) from Pseudomonas aeruginosa encoding type II PHA synthase. The fatty acid L-oxidation route was employed to provide various 3-hydroxyacyl-CoA thioesters, depending on the carbon source, as in vivo substrate for the PHA synthase. In vivo PHA synthase activity was indicated by PHA accumulation and substrate specificity was revealed by analysis of the comonomer composition of the respective polyester. Only in recombinant E. coli fad mutants harboring plasmid pBHR68, the R. eutropha PHA synthase led to accumulation of poly(3hydroxybutyrate-co-3-hydroxyoctanoate) (poly(3HB-co-3HO)) and poly(3HB-co-3HO-co-3-hydroxydodecanoate (3HDD)), when octanoate and decanoate or dodecanoate were provided as carbon source, respectively. Coexpression of phaC1 from P. aeruginosa indicated and confirmed the provision of PHA precursor via the L-oxidation pathway and led to the accumulation of a blend of two different PHAs in the respective E. coli strain. These data strongly suggested that R. eutropha PHA synthase accepts, besides the main substrate 3-hydroxybutyryl-CoA, also the CoA thioesters of 3HO and 3HDD. ß

New insights into activation and substrate recognition of polyhydroxyalkanoate synthase from Ralstonia eutropha

The polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC Re ) shows a lag time for the start of its polymerization reaction, which complicates kinetic analysis of PhaC Re . In this study, we found that the lag can be virtually eliminated by addition of 50 mg/L TritonX-100 detergent into the reaction mixture, as well as addition of 2.5 g/L Hecameg detergent as previously reported by Gerngross and Martin (Proc Natl Sci USA 92: 6279-6283, 1995). TritonX-100 is an effective lag eliminator working at much lower concentration than Hecameg. Kinetic analysis of PhaC Re was conducted in the presence of TritonX-100, and PhaC Re obeyed Michaelis-Menten kinetics for (R)-3hydroxybutyryl-CoA substrate. In inhibitory assays using various compounds such as adenosine derivatives and CoA derivatives, CoA free acid showed competitive inhibition but other compounds including 3′-dephospho CoA had no inhibitory effect. Furthermore, PhaC Re showed a considerably reduced reaction rate for 3′-dephospho (R)-3-hydroxybutyryl CoA substrate and did not follow typical Michaelis-Menten kinetics. These results suggest that the 3′-phosphate group of CoA plays a critical role in substrate recognition by PhaC Re .

Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16

Biochemical and Biophysical Research Communications, 2014

ReBktB is a b-keto thiolase from Ralstonia eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules that contains different numbers of carbon atoms, such as acetyl-CoA, propionyl-CoA, and butyryl-CoA, to produce valuable bioproducts, such as polyhydroxybutyrate, polyhydroxybutyrate-hydroxyvalerate, and hexanoate. We solved a crystal structure of ReBktB at 2.3 Å, and the overall structure has a similar fold to that of type II biosynthetic thiolases, such as PhbA from Zoogloea ramigera (ZrPhbA). The superposition of this structure with that of ZrPhbA complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of ReBktB. The catalytic site of ReBktB contains three conserved residues, Cys90, His350, and Cys380, which may function as a covalent nucleophile, a general base, and second nucleophile, respectively. For substrate binding, ReBktB stabilized the ADP moiety of CoA in a distinct way compared to ZrPhbA with His219, Arg221, and Asp228 residues, whereas the stabilization of b-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar between these two enzymes. Kinetic study of ReBktB revealed that K m , V max , and K cat values of 11.58 lM, 1.5 lmol/min, and 102.18 s À1 , respectively, and the catalytic and substrate binding sites of ReBktB were further confirmed by site-directed mutagenesis experiments.